题目大意:
给出平面上n(3≤n≤8)个点,每个点有一个坐标(未知
分析:
我们以最后两个有相等权值的点为基来考虑。
满足条件的一组构造必定满足如下条件:
1.因为权值均为正整数,所以没有三点共线;
2.构造必定形如:
即除Rn−1,Rn外的点必定在上或下的平行线上(证明很显然
3.在2的基础上,在上下两条平行线上分别任取一个点,这两个点连线段必过
综上所述,当n>4时,一定无解;
当n=4时,若R1+R2=R3+R4,那么可以把R1,R2上下放;
若R1=R2,可以两个都放上面;
否则无解;
当n=3时,一定有解,随便构造即可。
AC code:
#include <cstdio>
#include <cmath>
typedef double DB;
using namespace std;
const int MAXN = 5;
const DB eps = 1e-8;
int n;
DB a[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
scanf("%d", &n);
if(n > 4) puts("NO");
else
{
for(int i = 1; i <= n; ++i)
scanf("%lf", a+i);
if(n == 4)
{
if(fabs(a[1]+a[2]-a[3]-a[4]) > eps)
{
if(fabs(a[1]-a[2]) > eps) puts("NO");
else
{
DB x3 = -10, x4 = 10, x, y;
y = (a[1]+a[3]+a[4])*2/(x4-x3);
x = (a[1]+a[2]+a[3])*2/y;
puts("YES");
printf("%.4lf %.4lf\n", -x/2, y);
printf("%.4lf %.4lf\n", x/2, y);
printf("%.4lf 0.0000\n", x3);
printf("%.4lf 0.0000\n", x4);
}
}
else
{
DB x3 = -10, x4 = 10, y1, y2;
y1 = (a[1]+a[3]+a[4])*2/(x4-x3);
y2 = -(a[2]+a[3]+a[4])*2/(x4-x3);
puts("YES");
printf("0.0000 %.4lf\n", y1);
printf("0.0000 %.4lf\n", y2);
printf("%.4lf 0.0000\n", x3);
printf("%.4lf 0.0000\n", x4);
}
}
else
{
DB x2 = -10, x3 = 10, y1;
y1 = (a[1]+a[2]+a[3])*2/(x3-x2);
puts("YES");
printf("0.0000 %.4lf\n", y1);
printf("%.4lf 0.0000\n", x2);
printf("%.4lf 0.0000\n", x3);
}
}
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return 0;
}