❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦
🚀 “矩阵革命!DeepSeek开源FP8计算库:300行代码跑赢专家优化,MoE训练提速3倍”
大家好,我是蚝油菜花。当同行还在为万亿参数模型算力发愁时,一群极客用300行代码改写了游戏规则——
你是否正经历这些至暗时刻?
- 👉 MoE模型分组计算卡在显存瓶颈,batch_size死活上不去
- 👉 FP8精度损失严重,手动调参到凌晨3点仍报NaN警告
- 👉 专家库动辄百万行代码,想优化却找不到切入点…
DeepGEMM 的三大破局利器:
- ✅ JIT即时编译:运行时动态优化,彻底告别安装编译依赖地狱
- ✅ TMA硬件级加速:榨干Hopper架构性能,矩阵搬运效率提升200%+
- ✅ 双级累加黑科技:FP8计算+BF16精度保障,误差率直降80%
现在,百川智能的工程师用它把MoE推理延迟压进毫秒级——点击看如何用5行代码激活这个性能怪兽!
🚀 快速阅读
DeepGEMM 是 DeepSeek 开源的专为 FP8 矩阵乘法设计的高效库,支持普通和混合专家(MoE)分组的 GEMM 操作。
- 核心功能:支持高效 FP8 矩阵乘法,细粒度缩放和即时编译技术,显著提升计算性能。
- 技术原理:基于 NVIDIA Hopper 架构的 Tensor Memory Accelerator(TMA)特性,优化数据传输效率,并通过 CUDA 核心双级累加技术解决 FP8 精度问题。
DeepGEMM 是什么

DeepGEMM 是 DeepSeek 开源的专为 FP8(8 位浮点)矩阵乘法设计的高效库,支持普通和混合专家(MoE)分组的 GEMM 操作。该库基于即时编译(JIT)技术,无需安装时编译,支持在运行时动态优化,显著提升矩阵运算的性能和精度。
DeepGEMM 专为 NVIDIA Hopper 架构设计,充分利用 Tensor Memory Accelerator(TMA)特性,提升数据传输效率。其核心代码仅约 300 行,易于学习和优化,在多种矩阵形状上均达到或超过专家级优化库的性能。
DeepGEMM 的主要功能
- 高效 FP8 矩阵乘法(GEMM):专为 FP8 矩阵乘法设计,支持细粒度缩放,显著提升矩阵运算的性能和精度。
- 支持普通和分组 GEMM:适用于常规的矩阵乘法操作,并支持混合专家(MoE)模型中的分组矩阵乘法,优化多专家共享形状的场景。
- 即时编译(JIT)设计:所有内核在运行时动态编译,无需安装时编译,根据矩阵形状、块大小等参数进行优化,节省寄存器提升性能。
- Hopper 架构优化:充分利用 Tensor Memory Accelerator(TMA)特性,包括 TMA 加载、存储、多播和描述符预取,显著提升数据传输效率。
- 细粒度缩放和双级累加:引入细粒度缩放技术,基于 CUDA 核心的双级累加机制,将 FP8 计算结果提升到更高精度的格式(如 BF16),确保计算精度。
- 轻量级设计:核心代码简洁,仅约 300 行,易于理解和扩展,避免复杂模板或代数结构的依赖,降低学习和优化的难度。
DeepGEMM 的技术原理

- 即时编译(JIT)技术:所有内核在运行时动态编译,无需安装时编译,根据矩阵形状、块大小等参数进行优化,节省寄存器提升性能。
- Tensor Memory Accelerator(TMA):利用 Hopper 架构的 TMA 特性,提升数据传输效率,包括 TMA 加载、存储、多播和描述符预取。
- 细粒度缩放和双级累加:通过细粒度缩放技术,结合 CUDA 核心的双级累加机制,解决 FP8 精度不足的问题,确保计算精度。
如何运行 DeepGEMM
环境要求
在运行 DeepGEMM 之前,请确保满足以下环境要求:
DeepGEMM:FP8矩阵计算的开源神器

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



