【论文阅读笔记】ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

ECA-Net是一种基于SE-Net改进的注意力机制,通过一维卷积实现跨通道信息交互,避免了SEblock中特征维度的缩减,减少了模型复杂度,同时保持甚至提高了性能。实验表明,维持通道数和增加通道间信息交互对学习channel attention至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:ECA-Net
论文代码:https://github.com/BangguWu/ECANet

论文总结

  ECA-Net是基于SE-Net的扩展,其认为SE block的两个FC层之间的维度缩减是不利于channel attention的权重学习的,这个权重学习的过程应该直接一一对应。作者做了一系列实验来证明在attention block中保持channel数不变的重要性。

  ECA-Net的做法为:(1)Global Avg Pooling得到一个 1 ∗ 1 ∗ C 1*1*C 11C的向量;(2)通过一维卷积1D-Conv来完成跨channel间的信息交互。
  一维卷积的卷积核大小通过一个函数来自适应,使得channel数较大的层可以更多地进行cross channel 交互。自适应卷积核大小的计算公式为: k = ψ ( C ) = ∣ log ⁡ 2 ( C ) γ + b γ ∣ k=\psi(C)=|\frac{\log_2(C)}{\gamma}+\frac {b}{\gamma}| k=ψ(C)=γlog2(C)+γb,其中 γ = 2 , b = 1 \gamma=2,b=1 γ=2,b=1

论文内容

  作者表示,最近基于SE-Net的扩展,大多都只致力于开发复杂的attention模型,以得到更好的性能,这不可避免的增加了模型复杂度。而本文的方法ECA-Net只涉及少数的参数,可以达到两个目的:(1)避免特征维度的缩减;(2)增加channel间信息的交互,在降低复杂度的同时保持性能(通过一维卷积)。

  SE block的结构由两部分组成:(1)global avg pooling产生 1 ∗ 1 ∗ C 1*1*C 11C大小的feature maps;(2)两个fc层(中间有维度缩减)来产生每个channel的weight。
  ECA-Net的结构如下图所示:(1)global avg pooling产生 1 ∗ 1 ∗ C 1*1*C 11C大小的feature maps;(2)计算得到自适应的kernel_size;(3)应用kernel_size于一维卷积中,得到每个channel的weight。

消融学习实验

  作者对SE-Net的扩展尝试如下图所示:【前提知识 y y y为平均池化层的输出】,有SE-Var1(直接对y进行非线性运算),SE-Var2(对y进行depth-wise卷积运算,即一个channel一个参数),SE-Var3(对y直接进行一个全连接运算),SE-GC(对y进行分组卷积运算),ECA-NS(每个channel使用k个参数进行channel之间的交互),ECA(共享k个参数,进行channel之间的交互,即一维卷积)。

  由上图可以得出以下结论:

  1. SE-Var1与Vanilla的结果表明,不添加参数的attention都是有效的;
  2. SE-Var2与SE的结果表明,尽管SE-Var2的参数较少,但SE-Var2的效果仍比原始的SE要好,这表明了维持通道数的重要性。这个重要性比考虑channel之间的信息交互依赖的非线性还要重要;
  3. SE-Var3与SE的结果表明,SE-Var3只是用一个FC都比带维度缩减的两个FC层的SE要好;
  4. SE-Var3与SE-Var2的结果表明,跨channel的信息交互对于学习channel attention的重要性;
  5. Group Conv的使用是SE-Var3和SE-Var2的一个折中方法,但使用了Group Conv并没有SE-Var2的效果好;这可能是由于Group Conv放弃了不同Group之间的依赖,因而导致了错误的信息交互;
  6. ECA-NS对于每个channel都有k个参数,这样可以避免不同Group之间的信息隔离问题,从结果来说是可以的;
  7. ECA使用共享权重,结果表明了该方法的可行性;同时,共享权重可以减少模型参数;
自适应kernel_size

  作者放弃了使用线性方法来得到kernel_size,认为这样太过于局限了。由于channel数一般都是2的指数,所以有了如下公式:

  其中, ∣ x ∣ o d d |x|_{odd} xodd 的意思为选择最近的奇数; γ = 2 , b = 1 \gamma=2,b=1 γ=2,b=1

实验结果

和其他的SE-Net扩展的性能对比展示:
和其他的SE-Net扩展的结构对比展示:
ECA-Net应用于各种框架的性能展示:
kernel_size的手动选择实验
ECA-Net的性能展示
### 回答1: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制,可以提高模型的性能和效率。它通过对每个通道的特征图进行加权,使得网络可以更好地学习到重要的特征。ECA-Net的设计简单,易于实现,并且可以与各种深度卷积神经网络结构相结合使用。 ### 回答2: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制。 ECA-Net通过提出一种名为"Efficient Channel Attention"(ECA)的注意力机制,来增强深度卷积神经网络的性能。通道注意力是一种用于自适应调整不同通道的特征响应权重的机制,有助于网络更好地理解和利用输入数据的特征表示。 相比于以往的注意力机制,ECA-Net采用了一种高效且可扩展的方式来计算通道注意力。它不需要生成任何中间的注意力映射,而是通过利用自适应全局平均池化运算直接计算出通道注意力权重。这种方法极大地降低了计算和存储开销,使得ECA-Net在实际应用中更具实用性。 在进行通道注意力计算时,ECA-Net引入了两个重要的参数:G和K。其中,G表示每个通道注意力的计算要考虑的特征图的大小;K是用于精细控制计算量和模型性能之间平衡的超参数。 ECA-Net在各种视觉任务中的实验结果表明,在相同的模型结构和计算资源下,它能够显著提升网络的性能。ECA-Net对不同层级的特征表示都有显著的改进,能够更好地捕捉不同特征之间的关联和重要性。 总之,ECA-Net提供了一种高效并且可扩展的通道注意力机制,可以有效提升深度卷积神经网络的性能。它在计算和存储开销上的优势使得它成为一个非常有价值的工具,可在各种计算资源受限的应用中广泛应用。 ### 回答3: "eca-net: efficient channel attention for deep convolutional neural networks" 是一种用于深度卷积神经网络的高效通道注意力模块。这一模块旨在提高网络对不同通道(特征)之间的关联性的理解能力,以提升网络性能。 该方法通过引入了一个新的注意力机制来实现高效的通道注意力。传统的通道注意力机制通常是基于全局池化操作来计算通道之间的关联性,这种方法需要较高的计算成本。而ECA-Net则通过引入一个参数化的卷积核来计算通道之间的关联性,可以显著减少计算量。 具体来说,ECA-Net使用了一维自适应卷积(adaptive convolution)来计算通道注意力。自适应卷积核根据通道特征的统计信息来调整自身的权重,从而自适应地计算每个通道的注意力权重。这样就可以根据每个通道的信息贡献度来调整其权重,提高网络的泛化能力和性能。 ECA-Net在各种图像分类任务中进行了实验证明了其有效性。实验结果显示,ECA-Net在相同计算预算下,相比其他通道注意力方法,可以获得更高的分类精度。同时,ECA-Net还具有较少的额外计算成本和模型大小,使得其在实际应用中更加高效。 总结而言,"eca-net: efficient channel attention for deep convolutional neural networks" 提出了一种高效通道注意力方法,通过引入自适应卷积核来计算通道注意力,从而提高了深度卷积神经网络的性能。这一方法在实验中取得了良好的效果,并且具有较少的计算成本和模型大小。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值