快速理解卷积神经网络VGG16/VGG19,以及每个模块的作用及意义。

本文介绍了VGGNet的由来、网络结构,重点解析了VGG16的模块,包括卷积、池化、归一化等操作,阐述了深度学习中感受野、参数共享等概念,并讨论了VGG网络的优点和缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VGG历史

VGGNet是牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发的卷积神经网络。VGGNet探索了卷积神经网络的深度与其性能之间的关系,通过反复的使用3x3的小型卷积核和2x2的最大池化层,VGGNet成功地构筑了16~19层深的卷积神经网络。

VGG网络结构

在这里插入图片描述
首先解释一下图中的结构,ABCDE分别为当时VGG项目组测试的不同的网络结构,对于不同的结构进行了效果上的比较,从中发现LRN(local response normalization)好像并没什么用,之后就在后面的结构中舍弃了。图中D和E分别为VGG16和VGG19。
在这里插入图片描述
这里献上一个比较直观的结构图。

VGG16网络的好处

接触过深度学习的应该都知道最早的卷积神经网络都是通过比较大的卷积核进行卷积来提取特征的(例如AlexNet,LeNet),虽然卷积核的尺寸越大,越能够总结空间信息。但是同样也增加了参数的数量,提高了计算量。而VGG网络通过每个block中多个3x3 的卷积核来代替之前的大尺寸卷积核,可以说是非常的nice!举个例子,用3个3x3的卷积核来卷积得到像素对应的感受野大小与一个7x7卷积核得到的感受野大小是一样的。但是,参数量却是差了近一倍(3x3x3=27,7x7=49)。

各模块的讲解

相信你在学习深度学习网络的过程中,

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值