spark scala-实现udf函数

本文介绍如何使用 Spark 实现自定义函数(UDF),包括创建 RDD、DataFrame,并演示了如何注册及使用自定义函数进行数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文章主要通过spark实现udf自定义函数

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType

/**
 * @author jhp
  *         spark实现udf功能
 */
object UDF {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local") 
        .setAppName("UDF")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
  
    // 构造模拟数据
    val names = Array("Leo", "Marry", "Jack", "Tom") 
    val namesRDD = sc.parallelize(names, 5) 
    val namesRowRDD = namesRDD.map { name => Row(name) }
    val structType = StructType(Array(StructField("name", StringType, true)))  
    val namesDF = sqlContext.createDataFrame(namesRowRDD, structType) 
    
    // 注册一张names    namesDF.registerTempTable("names")  
    
    // 定义和注册自定义函数
    // 定义函数:自己写匿名函数
    // 注册函数:SQLContext.udf.register()
    sqlContext.udf.register("strLen", (str: String) => str.length()) 
  
    // 使用自定义函数
    sqlContext.sql("select name,strLen(name) from names")
        .collect()
        .foreach(println)  
  }
  
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值