MapReduce Demo

本文介绍了一个使用Hadoop实现的基本单词计数应用。该应用包括一个主类MainClass,负责设置MapReduce作业;一个Mapper类MyMapper,用于读取文本并拆分为单词;以及一个Reducer类MyReducer,用于统计单词频率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MainClass

package com.bjsxt.mr.wordcount;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MainClass {
	
	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
		
		if (args == null || args.length != 2) {
			
			System.out.println("Usage: yarn jar wordcount.jar com.bjsxt.mr.wordcount.MainClass <arg> <arg>");
			
			return;
		}
		
		// 获取配置参数对象,加载默认的属性值
		Configuration conf = new Configuration(true);
		Job job = Job.getInstance(conf);
		//设置主入口类
		job.setJarByClass(MainClass.class);
		job.setJobName("我的数单词");
		
		//设置输入
		FileInputFormat.addInputPath(job, new Path(args[0]));
		//设置job的输出路径:job的输出路径一定是不存在的路径,如果存在,报错
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		//设置Mapper类
		job.setMapperClass(MyMapper.class);
		//设置Reducer类
		job.setReducerClass(MyReducer.class);
		
		//设置map输出key的类型:用于比较排序
		job.setMapOutputKeyClass(Text.class);
		//设置map输出value的类型
		job.setMapOutputValueClass(LongWritable.class);
		
		//提交作业,并等待作业的完成
		job.waitForCompletion(true);
	}
	
}

MyMapper

package com.bjsxt.mr.wordcount;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
	
	private LongWritable valueOut = new LongWritable(1L);
	private Text outKey = new Text();
	
	@Override
	protected void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		
		// hello bjsxt 5
		String line = value.toString();
		// {"hello", "bjsxt", "5"}
		String [] words = line.split(" ");
		
		for (String word : words) {
			// <"hello", 1>
			outKey.set(word);
			context.write(outKey, valueOut);
		}
	}
	
}

MyReducer

package com.bjsxt.mr.wordcount;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
	
	private LongWritable outValue = new LongWritable();
	
	@Override
	protected void reduce(Text key, Iterable<LongWritable> values,
			Context context) throws IOException, InterruptedException {
		// <"hello", [1,1,1,1,1,1,1,1,1]>
		//获取迭代器,遍历values
		Iterator<LongWritable> iterator = values.iterator();
		
		long sum = 0L;
		
		while (iterator.hasNext()) {
			LongWritable num = iterator.next();
			sum += num.get();
		}
		//将求和的总数封装为LongWritable类型,并输出到HDFS
		outValue.set(sum);
		context.write(key, outValue);
	}
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值