知识梳理
首先,何为数组。
数组即为一组有着相同类型的变量的集合。在整个数组中的每个元素,都有着自己的下标。
通过数组下标,可以实现对数组元素的访问。
举例:
a[0],a[1],a[2]..........
第二,数组的定义。
数组的定义一般格式为
int(定义类型) a(数组名)[100](定义数组大小)
其中,定义数组的位置可以放在主函数外的开头部分,也可以放在主函数内。
..........
int a[100];
int main()
{
........
}
or
int main()
{
int a[100];
}
值得注意的是,当在主函数外定义且未赋值的时候,数组内的所有元素默认为“0”;但是当你在主函数内定义且未赋值,那么数组内所有的元素都会是随机数。
第三,数组的赋值。
你可以在一开始就给数组复赋值。
int a[10]={1,2,3,4.........}
如果你所赋值的元素的个数不够定义数组的个数的话,那么剩下的元素的值将被赋值为“0”;
或者在定义好了之后,再给数组赋值。
for(int i=0;i<n;i++){
cin>>a[i];
}
其中,“i”是数组的下标,这里要注意下标是从“0”开始的,另外一个要注意的是,不要越界,即赋值的元素的量不要超过数组的大小,否则很容易报错。
第四,数组的使用。
数组的使用很简单,在给数组赋值后,只要有具体的下标,便可以确定数组元素。之后便可以像使用普通的“int a”中的“a”一样就可以。
举例
for(int i=0;i<10;i++){
a[i]=i;
}
//我们给数组的十个元素依次附上0-9的值
for(int i=0;i<9;i++){
cout<<a[i]+a[i+1];
}
//依次打印每个相邻数组元素的和。
第五,其他数组。
(1)二维数组
这种“a[100]”类型的数组又称为一维数组,既然有一维数组,那么就可以有二维,三维…在这里,我们只讨论二维。
首先,二维数组和一维数组并没有太大差别,定义的方法也是相似。
int a[100][100];
至于其他的,比如赋值和使用方法也是相似的。
//用双重循环赋值
for(int i=0;i<n;i++){
for(int t=0;t<m;t++){
cin>>a[i][t];
}
}
那么他们不同在哪里呢。
如果说一位数组就像是一行元素,
0 1 2
a[0] a[1] a[2]
那么二维数组就可以抽象成一个表格,在一些问题上比一维数组更加好用。
0 1 2 3
0 a[0][0] a[0][1] a[0][2] a[0][3]
1 a[1][0] a[1][1] a[1][2] a[1][3]
2 a[2][0] a[2][1] a[2][2] a[2][3]
3 a[3][0] a[3][1] a[3][2] a[3][3]
(2)浅谈动态数组
定义数组时,数组的大小必须是一个常量,为了避免越界,一般来说会定义一个很大的数组。
其实,除了这种解决办法之外,还有另外一种解决方案,那就是“vector”动态数组。
首先,是动态数组的定义。
include<vector>//头文件
vector<int> a ; //声明一个int型向量a
vector<int> a(10) ; //声明一个初始大小为10
vector<int> a(10, 1) ; //声明一个初始大小为10且初始值都为1的动态数组
或者
int n[] = {1, 2, 3, 4, 5} ;
vector<int> a(n, n+5) ; //将数组n的前5个元素作为动态数组a的初值
vector<int> a(&n[1], &n[4]) ; //将n[1] - n[4]范围内的元素作为动态数组a的初值
接着,是输入输出
a.push_back(n)//向里面插入元素
//或者在已经定义的大小的范围内
vector<int> a(10, 0) ;
cin >>a[2] ;
cin >>a[5] ;
//输出和普通数组的输出一样
for(i=0; i<a.size()/*这是计算动态数组大小的函数*/; i++)
cout<<a[i]<<" " ;
题目举例
(1)模拟
描述
某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米。我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置;数轴上的每个整数点,即0,1,2,……,L,都种有一棵树。
由于马路上有一些区域要用来建地铁。这些区域用它们在数轴上的起始点和终止点表示。已知任一区域的起始点和终止点的坐标都是整数,区域之间可能有重合的部分。现在要把这些区域中的树(包括区域端点处的两棵树)移走。你的任务是计算将这些树都移走后,马路上还有多少棵树。
输入
第一行有两个整数L(1 <= L <= 10000)和 M(1 <= M <= 100),L代表马路的长度,M代表区域的数目,L和M之间用一个空格隔开。接下来的M行每行包含两个不同的整数,用一个空格隔开,表示一个区域的起始点和终止点的坐标。
对于20%的数据,区域之间没有重合的部分;
对于其它的数据,区域之间有重合的情况。
输出
包括一行,这一行只包含一个整数,表示马路上剩余的树的数目。
在这个题目中,可以使用数组模拟那里有无树木,最后再进行计算。
int main()
{
int x,y,n,m,q=0;
scanf("%d %d",&x,&y);
int a[x+1]={0};
for(int i=1;i<=y;i++){
scanf("%d %d",&n,&m);
for(int p=n;p<=m;p++){
a[p]=1;
}
}
for(int i=0;i<=x;i++){
if(a[i]==0)q++;
}
cout<<q;
return 0;
}
(2)保存数据
描述
将一个数组中的值按逆序重新存放。例如,原来的顺序为8,6,5,4,1。要求改为1,4,5,6,8。
输入
输入为两行:第一行数组中元素的个数n(1<n<100),第二行是n个整数,每两个整数之间用空格分隔。
输出
输出为一行:输出逆序后数组的整数,每两个整数之间用空格分隔。
在这一题目中,可以用数组保存数据,最后再反向输出数组。
#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int n;
scanf("%d",&n);
int a[n]{0};
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=n-1;i>=0;i--){
if(i==0)cout<<a[i];
else cout<<a[i]<<" ";
}
return 0;
}
感悟
1.数组作为一个非常方便并且极为基础的东西,是必须要熟练掌握的,在许多题目中,数组都得到了应用,无论是用来模拟还是保存数据,数组都是必不可少的。
2.在使用数组的时候,一定要注意,不要越界!不要越界!不要越界!,定义的时候要尽量定义大数组,避免因为越界出错。
3.数组的下标是从“0”开始,不是从“1”开始,在计数控制和赋值时一定要注意这件事。
4.定义数组只能用常量!虽然coldblocks中用变量定义也能通过,但是这只是特殊情况,平时一定要养成用常量的习惯!
5.要学会用c/c++中自带的函数来操作数组,比如排序就可以用“sort排序”,可以大大节省时间。