caffe之操蛋的create_imagenet

QAQ,鼓捣了三四天,反正我蠢我bb

train0.JPEG 0
train1.JPEG 0
train2.JPEG 0
train3.JPEG 0
train4.JPEG 0
train5.JPEG 0
train6.JPEG 0
train7.JPEG 0
......

train.txt应该这样写

<filename><一个空格><类别号>

cd
cd 文档/sh_learn
bash val.sh
bash train.sh


#! /bin/bash

cd
cd 文档/sh_learn

path=train2
rm -r train
rm train.txt
clear
dir=$(ls $path)
num_pic=0
num_num=0
num_name=0
max=200  
mkdir train
dir2=$(ls $path$i)
for i in $dir2
do
	echo "数字:($i),编号:($num_num)"
	num_pic=0
	dir3=$(ls $path/$i)
	for j in $dir3
	do	
		if [ $max -gt $num_pic ]
		then	echo "第($num_pic)张图片名($j),新图片名($num_name.jpg)"
			cp $path/$i/$j train/train$num_name.JPEG
			echo train$num_name.JPEG $num_num >> train.txt 
		fi
		let num_pic+=1
		let num_name+=1	
	done 
let num_num+=1
done	
#! /bin/bash

cd
cd 文档/sh_learn

path=val2
rm -r val
rm val.txt
clear
dir=$(ls $path)
num_pic=0
num_num=0
num_name=0
max=200  
mkdir val
dir2=$(ls $path$i)
for i in $dir2
do
	echo "数字:($i),编号:($num_num)"
	num_pic=0
	dir3=$(ls $path/$i)
	for j in $dir3
	do	
		if [ $max -gt $num_pic ]
		then	echo "第($num_pic)张图片名($j),新图片名($num_name.jpg)"
			cp $path/$i/$j val/train$num_name.JPEG
			echo train$num_name.JPEG $num_num >> val.txt 
		fi
		let num_pic+=1
		let num_name+=1	
	done 
let num_num+=1
done	

这是我把图片放在一起并生成txt的

然后是那个该死的create_imagenet<oh,不是该死的,是我蠢=- =,QAQ>

(注意:这里用的是灰度图像,灰度灰度灰度gray)

#!/usr/bin/env sh
clear
sudo rm -r examples/my_imagenet/ilsvrc12_train_lmdb
sudo rm -r examples/my_imagenet/ilsvrc12_val_lmdb
EXAMPLE=examples/my_imagenet
DATA=data/my_ilsvrc12data/
TOOLS=build/tools 
TRAIN_DATA_ROOT=data/my_ilsvrc12data/train/
RESIZE=true
if $RESIZE; then
 RESIZE_HEIGHT=32
 RESIZE_WIDTH=32
else
 RESIZE_HEIGHT=0
 RESIZE_WIDTH=0
fi

if [ ! -d "$TRAIN_DATA_ROOT" ];then
 echo "Error: TRAIN_DATA_ROOT is not a path to a directory:$TRAIN_DATA_ROOT"
 echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to thepath" \
      "where the ImageNet training data is stored."
 exit 1
fi
echo "Creating train lmdb..."
GLOG_logtostderr=1 $TOOLS/convert_imageset \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --backend="lmdb" \
    --gray=true \
    --shuffle \
    $TRAIN_DATA_ROOT \
    $DATA/train.txt \
    $EXAMPLE/ilsvrc12_train_lmdb

VAL_DATA_ROOT=data/my_ilsvrc12data/val/
if [ ! -d "$VAL_DATA_ROOT" ]; then
 echo "Error: VAL_DATA_ROOT is not a path to a directory:$VAL_DATA_ROOT"
 echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to thepath" \
      "where the ImageNet validation data is stored."
 exit 1
fi
echo "Creating val lmdb..." 
GLOG_logtostderr=1 $TOOLS/convert_imageset \
   --resize_height=$RESIZE_HEIGHT \
   --resize_width=$RESIZE_WIDTH \
   --backend="lmdb" \
   --gray=true \
--shuffle \ $VAL_DATA_ROOT \ $DATA/val.txt \ $EXAMPLE/ilsvrc12_val_lmdb echo "Done."

重点啊:

sh create_imagenet.sh

结果啊:

Creating train lmdb...
I1031 10:05:10.154927 11937 convert_imageset.cpp:86] Shuffling data
I1031 10:05:10.155725 11937 convert_imageset.cpp:89] A total of 2000 images.
I1031 10:05:10.155937 11937 db_lmdb.cpp:35] Opened lmdb examples/my_imagenet/ilsvrc12_train_lmdb
I1031 10:05:11.350745 11937 convert_imageset.cpp:147] Processed 1000 files.
I1031 10:05:12.523094 11937 convert_imageset.cpp:147] Processed 2000 files.
Creating val lmdb...
I1031 10:05:12.550520 11938 convert_imageset.cpp:86] Shuffling data
I1031 10:05:12.551501 11938 convert_imageset.cpp:89] A total of 2000 images.
I1031 10:05:12.551832 11938 db_lmdb.cpp:35] Opened lmdb examples/my_imagenet/ilsvrc12_val_lmdb
I1031 10:05:15.412485 11938 convert_imageset.cpp:147] Processed 1000 files.
I1031 10:05:18.186136 11938 convert_imageset.cpp:147] Processed 2000 files.
Done.
erkp@erkp:~/caffe-master$ sudo bash '/home/erkp/caffe-master/data/my_ilsvrc12data/create_imagenet.sh' 

结果是这个鸟样:


may force be with me

    --backend="lmdb" \
    --gray=true \


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RtZero

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值