Squares
Time Limit: 3500MS | Memory Limit: 65536K | |
Total Submissions: 16784 | Accepted: 6389 |
Description
A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however,
as a regular octagon also has this property.
So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates.
So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates.
Input
The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points to follow. Each of the next n lines specify the x and y coordinates (two integers) of each point. You may assume that the
points are distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.
Output
For each test case, print on a line the number of squares one can form from the given stars.
Sample Input
4 1 0 0 1 1 1 0 0 9 0 0 1 0 2 0 0 2 1 2 2 2 0 1 1 1 2 1 4 -2 5 3 7 0 0 5 2 0
Sample Output
1 6 1
题意:在所给的点中找能组成的正方形的数目,
将给出的点都存入哈希表中,因为若是枚举4个点肯定会超时,可以枚举两个点,再以此求出能跟这两个点组成正方形的另外两个点,判断哈希表中是否存在这两个点
依据公式:
x3=x1+(y1-y2) ; y3=y1-(x1-x2) ;
x4=x2+(y1-y2) ; y4=y2-(x1-x2) ;
或
x3=x1-(y1-y2) ; y3=y1+(x1-x2) ;
x4=x2-(y1-y2) ; y4=y2+(x1-x2) ;
#include <iostream>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <string.h>
using namespace std;
const int prime=1999;
struct node
{
int x;
int y;
}point[1010];
typedef struct HASH
{
int x;
int y;
HASH *next;
HASH()
{
next=0;
}
}Hash;
Hash *Hs[prime];//定义指针数组,作为哈希链表的头指针
void Insert(int k)//插入哈希表,标记散点
{
int key=(point[k].x*point[k].x+point[k].y*point[k].y)%prime+1;
if(!Hs[key])//若为空,直接将关键字插入
{
Hash *t=new Hash;
t->x=point[k].x;
t->y=point[k].y;
Hs[key]=t;
}
else//若不为空,找到链表的最后节点再插入
{
Hash *t=Hs[key];
while(t->next)
{
t=t->next;
}
t->next=new HASH;
t->next->x=point[k].x;
t->next->y=point[k].y;
}
}
int Find(int x,int y)//查找该点是否在哈希表中
{
int key=(x*x+y*y)%prime+1;
if(!Hs[key])//头节点为空直接返回0
{
return 0;
}
else
{
Hash *t=Hs[key];
while(t)//依次遍历
{
if(t->x==x&&t->y==y)
return 1;
t=t->next;
}
}
return 0;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
int sum=0;
if(!n)
break;
memset(Hs,0,sizeof(Hs));
for(int i=1;i<=n;i++)
{
scanf("%d%d",&point[i].x,&point[i].y);
Insert(i);//插入哈希表
}
for(int i=1;i<n;i++)
{
for(int j=i+1;j<=n;j++)
{
int s=point[i].x-point[j].x;
int t=point[i].y-point[j].y;
int x3=point[i].x+t;
int y3=point[i].y-s;
int x4=point[j].x+t;
int y4=point[j].y-s;
if(Find(x3,y3)&&Find(x4,y4))//判断另外两个点是否在哈希表中
sum++;
x3=point[i].x-t;
y3=point[i].y+s;
x4=point[j].x-t;
y4=point[j].y+s;
if(Find(x3,y3)&&Find(x4,y4))
sum++;
}
}
printf("%d\n",sum/4);
}
return 0;
}