四种算法是DFS,BFS,Heuristic DFS, Heuristic BFS (A*)
用了两张障碍表,一张是典型的迷宫:
char Block[SY][SX]=
{{1,1,1,1,1,1,1,1,1,1,1 },
{1,0,1,0,1,0,0,0,0,0,1 },
{1,0,1,0,0,0,1,0,1,1,1 },
{1,0,0,0,1,0,1,0,0,0,1 },
{1,0,1,1,0,0,1,0,0,1,1 },
{1,0,1,0,1,1,0,1,0,0,1 },
{1,0,0,0,0,0,0,0,1,0,1 },
{1,0,1,0,1,0,1,0,1,0,1 },
{1,0,0,1,0,0,1,0,1,0,1 },
{1,1,1,1,1,1,1,1,1,1,1 }};
第二张是删掉一些障碍后的:
char Block[SY][SX]=
{{1,1,1,1,1,1,1,1,1,1,1 },
{1,0,1,0,1,0,0,0,0,0,1 },
{1,0,1,0,0,0,1,0,1,1,1 },
{1,0,0,0,0,0,1,0,0,0,1 },
{1,0,0,1,0,0,1,0,0,1,1 },
{1,0,1,0,0,1,0,1,0,0,1 },
{1,0,0,0,0,0,0,0,1,0,1 },
{1,0,1,0,0,0,1,0,1,0,1 },
{1,0,0,1,0,0,1,0,0,0,1 },
{1,1,1,1,1,1,1,1,1,1,1 }};
结果:
尝试节点数 合法节点数 步数
深度优先 416/133 110/43 19/25
广度优先 190/188 48/49 19/15
深度+启发 283/39 82/22 19/19
广度+启发 189/185 48/49 19/15
所以可以看出深度+启发是最好的,效率高路径也挺短。A*第一是不真实二是慢三是空间消耗较大。
附:dfs+heu的源程序,bc++ 3.1通过
- #include <iostream.h>
- #include <memory.h>
- #include <stdlib.h>
- #define SX 11 //宽
- #define SY 10 //长
- int dx[4]={0,0,-1,1}; //四种移动方向对x和y坐标的影响
- int dy[4]={-1,1,0,0};
- /*char Block[SY][SX]= //障碍表
- {{ 1,1,1,1,1,1,1,1,1,1,1 },
- { 1,0,1,0,1,0,0,0,0,0,1 },
- { 1,0,1,0,0,0,1,0,1,1,1 },
- { 1,0,0,0,0,0,1,0,0,0,1 },
- { 1,0,0,1,0,0,1,0,0,1,1 },
- { 1,0,1,0,0,1,0,1,0,0,1 },
- { 1,0,0,0,0,0,0,0,1,0,1 },
- { 1,0,1,0,0,0,1,0,1,0,1 },
- { 1,0,0,1,0,0,1,0,0,0,1 },
- { 1,1,1,1,1,1,1,1,1,1,1 }};*/
- char Block[SY][SX]= //障碍表
- {{ 1,1,1,1,1,1,1,1,1,1,1 },
- { 1,0,1,0,1,0,0,0,0,0,1 },
- { 1,0,1,0,0,0,1,0,1,1,1 },
- { 1,0,0,0,1,0,1,0,0,0,1 },
- { 1,0,1,1,0,0,1,0,0,1,1 },
- { 1,0,1,0,1,1,0,1,0,0,1 },
- { 1,0,0,0,0,0,0,0,1,0,1 },
- { 1,0,1,0,1,0,1,0,1,0,1 },
- { 1,0,0,1,0,0,1,0,1,0,1 },
- { 1,1,1,1,1,1,1,1,1,1,1 }};
- int MaxAct=4; //移动方向总数
- char Table[SY][SX]; //已到过标记
- int Level=-1; //第几步
- int LevelComplete=0; //这一步的搜索是否完成
- int AllComplete=0; //全部搜索是否完成
- char Act[1000]; //每一步的移动方向,搜索1000步,够了吧?
- int x=1,y=1; //现在的x和y坐标
- int TargetX=9,TargetY=8; //目标x和y坐标
- int sum1=0,sum2=0;
- void Test( );
- void Back( );
- int ActOK( );
- int GetNextAct( );
- void main( )
- {
- memset(Act,0,sizeof(Act)); //清零
- memset(Table,0,sizeof(Table));
- Table[y][x]=1; //做已到过标记
- while (!AllComplete) //是否全部搜索完
- {
- Level++;LevelComplete=0; //搜索下一步
- while (!LevelComplete)
- {
- Act[Level]=GetNextAct( ); //改变移动方向
- if (Act[Level]<=MaxAct)
- sum1++;
- if (ActOK( )) //移动方向是否合理
- {
- sum2++;
- Test( ); //测试是否已到目标
- LevelComplete=1; //该步搜索完成
- }
- else
- {
- if (Act[Level]>MaxAct) //已搜索完所有方向
- Back( ); //回上一步
- if (Level<0) //全部搜索完仍无结果
- LevelComplete=AllComplete=1; //退出
- }
- }
- }
- }
- void Test( )
- {
- if ((x==TargetX)&&(y==TargetY)) //已到目标
- {
- for (int i=0;i<=Level;i++)
- cout<<(int)Act
; //输出结果 - cout<<endl;
- cout<<Level+1<<" "<<sum1<<" "<<sum2<<endl;
- LevelComplete=AllComplete=1; //完成搜索
- }
- }
- int ActOK( )
- {
- int tx=x+dx[Act[Level]-1]; //将到点的x坐标
- int ty=y+dy[Act[Level]-1]; //将到点的y坐标
- if (Act[Level]>MaxAct) //方向错误?
- return 0;
- if ((tx>=SX)||(tx<0)) //x坐标出界?
- return 0;
- if ((ty>=SY)||(ty<0)) //y坐标出界?
- return 0;
- if (Table[ty][tx]==1) //已到过?
- return 0;
- if (Block[ty][tx]==1) //有障碍?
- return 0;
- x=tx;
- y=ty; //移动
- Table[y][x]=1; //做已到过标记
- return 1;
- }
- void Back( )
- {
- x-=dx[Act[Level-1]-1];
- y-=dy[Act[Level-1]-1]; //退回原来的点
- Table[y][x]=0; //清除已到过标记
- Act[Level]=0; //清除方向
- Level--; //回上一层
- }
- int GetNextAct( ) //找到下一个移动方向。这一段程序有些乱,
- //仔细看!
- {
- int dis[4];
- int order[4];
- int t=32767;
- int tt=2;
- for (int i=0;i<4;i++)
- dis
=abs(x+dx -TargetX)+abs(y+dy -TargetY); - for (i=0;i<4;i++)
- if (dis
<t) - {
- order[0]=i+1;
- t=dis
; - }
- if (Act[Level]==0)
- return order[0];
- order[1]=-1;
- for (i=0;i<4;i++)
- if ((dis
==t)&&(i!=(order[0]-1))) - {
- order[1]=i+1;
- break;
- }
- if (order[1]!=-1)
- {
- for (i=0;i<4;i++)
- if (dis
!=t) - {
- order[tt]=i+1;
- tt++;
- }
- }
- else
- {
- for (i=0;i<4;i++)
- if (dis
!=t) - {
- order[tt-1]=i+1;
- tt++;
- }
- }
- if (Act[Level]==order[0])
- return order[1];
- if (Act[Level]==order[1])
- return order[2];
- if (Act[Level]==order[2])
- return order[3];
- if (Act[Level]==order[3])
- return 5;
- }