Rocchio算法测试测试集时出错:Incompatible dimension for X and Y matrices: X.shape[1]

在白话大数据与机器学习一书,对照p222打例子:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.datasets import fetch_20newsgroups
from sklearn.neighbors.nearest_centroid import NearestCentroid
from pprint import pprint
import sys

#读取数据
newsgroups_train = fetch_20newsgroups(subset='train')
pprint(list(newsgroups_train.target_names))
#随机选4个主题
categories = ['alt.atheism','comp.graphics','soc.religion.christian','sci.med']
#下载4个主题里的文件
train_data = fetch_20newsgroups(subset = "train", categories = categories)
#文件内容在train_data.data这个变量里。现在对内容进行分词和向量化操作
count_vect = CountVectorizer()
train_counts = count_vect.fit_transform(train_data.data)
#接着对向量化之后的结果做TF-IDF转换
tfidf_transformer = TfidfTransformer()
train_tfidf = tfidf_transformer.fit_transform(train_counts)

#现在把TF-IDF转换后的结果和每条结果对应的主题编号train_data.target放入分类器中进行训练
clf = NearestCentroid().fit(train_tfidf, train_data.target)
#创建测试集合,这里有两条
Rocchio算法是一种基于向量空间模型的文本分类算法,其思想是将测试文档的向量表示与已知类别的训练文档的向量表示进行比较,根据最相似的训练文档的类别来预测测试文档的类别。以下是一个基于Rocchio算法测试文档分类的Python代码示例: ```python import numpy as np class RocchioClassifier: def __init__(self, alpha=1, beta=0.75, threshold=0): self.alpha = alpha # 加权因子 self.beta = beta # 减权因子 self.threshold = threshold # 判断阈值 def fit(self, X, y): # 计算各个类别的文档向量的平均值 self.class_means = {} for label in np.unique(y): self.class_means[label] = np.mean(X[y == label], axis=0) def predict(self, X): y_pred = [] for x in X: # 计算测试文档向量与各个类别的文档向量的余弦相似度 similarities = {} for label, mean in self.class_means.items(): similarities[label] = np.dot(x, mean) / (np.linalg.norm(x) * np.linalg.norm(mean)) # 根据余弦相似度最大的类别来预测测试文档的类别 max_label = max(similarities, key=similarities.get) if similarities[max_label] >= self.threshold: y_pred.append(max_label) else: y_pred.append(None) return y_pred def fit_predict(self, X_train, y_train, X_test): self.fit(X_train, y_train) return self.predict(X_test) ``` 使用示例: ```python from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report # 加载数据集 newsgroups = fetch_20newsgroups(subset='all') # 特征提取 vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(newsgroups.data) y = newsgroups.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练并预测 clf = RocchioClassifier() y_pred = clf.fit_predict(X_train, y_train, X_test) # 评估分类器性能 print(classification_report(y_test, y_pred, target_names=newsgroups.target_names)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值