105.从前序与中序遍历序列构造二叉树
- 首先是搞清楚如何通过前序和中序构造的
- 有点类似于二分查找+二叉树
- 我没有在函数参数中传入索引,这样每次递归会构造新的数组,更繁琐一点
class Solution {
public:
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
if (inorder.size() == 0 || preorder.size() == 0)
return nullptr;
// 参数坚持左闭右开的原则
return traversal(inorder, preorder);
}
private:
TreeNode *traversal(vector<int> &inorder, vector<int> &preorder) {
if (preorder.size() == 0)
return nullptr;
int rootValue = preorder[0]; // 注意用preorderBegin 不要用0
TreeNode *root = new TreeNode(rootValue);
if (preorder.size() == 1)
return root;
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size();
delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue)
break;
}
// 切割中序数组
// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
// preorder 舍弃末尾元素
preorder.erase(preorder.begin());
// 切割后序数组
// 依然左闭右开,注意这里使用了左中序数组大小作为切割点
// [0, leftInorder.size)
vector<int> leftPreorder(preorder.begin(), preorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPretorder(preorder.begin() + leftInorder.size(), preorder.end());
root->left = traversal(leftInorder, leftPreorder);
root->right = traversal(rightInorder, rightPretorder);
return root;
}
};
106.从中序和后序遍历序列构造二叉树
- 类似于105
- 代码随想录的写法,函数入参添加索引,降低复杂度
class Solution {
private:
// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
if (postorderBegin == postorderEnd) return NULL;
int rootValue = postorder[postorderEnd - 1];
TreeNode* root = new TreeNode(rootValue);
if (postorderEnd - postorderBegin == 1) return root;
int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;
// 切割后序数组
// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
int leftPostorderBegin = postorderBegin;
int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
// 左闭右开的原则
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};
112.路径总和
- 类似于寻找所有路径的那道题,
- 使用一个数记录当前节点的count,与进行回溯
class Solution {
public:
bool traversal(TreeNode *node, int sum) {
if (node->left == nullptr && node->right == nullptr) {
if (sum == 0)
return true;
else
return false;
}
if (node->left) {
sum -= node->left->val;
if (traversal(node->left, sum)) return true;
sum += node->left->val;
}
if (node->right) {
sum -= node->right->val;
if (traversal(node->right, sum)) return true;
sum += node->right->val;
}
return false;
}
bool hasPathSum(TreeNode *root, int targetSum) {
if (root == nullptr) return false;
return traversal(root, targetSum - root->val);
}
};
113路径总和Ⅱ
- 和112区别就是使用一个数组记录访问过的数字
- 最后要输出的是访问过的数字
class Solution {
public:
void traversal(TreeNode *node, int count, vector<int> paths, vector<vector<int>> &res) {
if (node->left == nullptr && node->right == nullptr) {
if (count == 0)
res.push_back(paths);
return;
}
if (node->left) {
paths.push_back(node->left->val);
count -= node->left->val;
traversal(node->left, count, paths, res);
paths.pop_back();
count += node->left->val;
}
if (node->right) {
paths.push_back(node->right->val);
count -= node->right->val;
traversal(node->right, count, paths, res);
paths.pop_back();
count += node->right->val;
}
}
vector<vector<int>> pathSum(TreeNode *root, int targetSum) {
vector<int> path;
vector<vector<int>> res;
if (root == nullptr)return res;
path.push_back(root->val);
traversal(root, targetSum - root->val, path, res);
return res;
}
};
513.找树左下角的值
- 我直接使用BFS
- 最后一组的第一个数字,就是结果
class Solution {
public:
int findBottomLeftValue(TreeNode *root) {
queue<TreeNode *> que;
int res;
que.push(root);
while (!que.empty()) {
int size = que.size();
res = que.front()->val;
for (int i = 0; i < size; ++i) {
TreeNode *cur = que.front();
que.pop();
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
}
return res;
}
};
- 递归方法
class Solution2 {
public:
int maxDepth = INT_MIN;
int res;
void travsersal(TreeNode *root, int depth) {
if (root->left == nullptr && root->right == nullptr) {
if (depth > maxDepth) {
maxDepth = depth;
res = root->val;
}
return;
}
if (root->left) {
depth++;
travsersal(root->left, depth);
depth--;
}
if (root->right) {
depth++;
travsersal(root->right, depth);
depth--;
}
return;
}
int findBottomLeftValue(TreeNode *root) {
travsersal(root, 0);
return res;
}
};
day18结束