最近在看深度学习与神经系统方面的文章,发现深度学习对推荐系统有很大的影响,特此进行下总结,为自己接下来的阅读总结做参考。
如今,深度学习技术应用到推荐系统的主要分为以下5类:
1、自编码器AE:通过一个编码和一个解码过程来重构输入数据,学习数据的隐层表示。
多用于:评分预测、文本推荐、图像推荐
2、受限玻尔兹曼机RBM:是一种生成式随机神经网络,BM能够学习复杂的规则,具有强大的无监督学习能力。RBM去除同层变量之间的所有连接,极大地提高了学习效率。
多用于:用户评分预测
3、深度信念网络DBN:由多层非线性变量连接组成的生成式模型。靠近可见层的部分是多个贝叶斯信念网络,最远层可见部分则是RBM。DBN的训练可采用一种贪婪逐层算法。当前应用场景仅限于音乐推荐。
4、卷积神经网络CNN:是一种多层感知机,主要被用来处理二维数据图像。
多用于:图像、文本、音乐推荐
5、循环神经网络RNN:最大特点在于神经网络各隐层之间的结点是具有连接的,RNN能对过去的信息进行记忆。
LSTM(长短期记忆网络),GRU(门限循环单元)
多用于:预测评分、图像推荐、文本推荐、基于社交网络自己中的兴趣点推荐
这里主要总结RNN与推荐系统。
主要以以下四篇文章为主:
1、A Neural Network Approach to Quote Recommendationin Writings
2、Collaborative Filtering with Recurrent Neural Networks(2016)