HDU1143 (递推)题解

博客介绍了如何解决HDU1143问题,通过分析可以填满格子的两种样式,得出递推关系式:f[n]=3*f[n-2]+2*f[n-4]+...+2*f[0]。进一步简化得到递归公式:f[n]=4*f[n-2]-f[n-4]。并提供了相关的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tri Tiling

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4343    Accepted Submission(s): 2518


Problem Description
In how many ways can you tile a 3xn rectangle with 2x1 dominoes? Here is a sample tiling of a 3x12 rectangle.


 

Input
Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 ≤ n ≤ 30.
 

Output
For each test case, output one integer number giving the number of possible tilings.
 

Sample Input
2812-1
 
Sample Output
31532131

思路:

先来看能用来填满的格子的样式:1是只能加两列,2是能加4+2*n列


对第一种:f[n]=3*f[n-2](在前n-2基础上不断加第一种)

对第二种:f[n]=2*f[n-4]+2*f[n-6]+...+2*f[0](在第二种基础上加第一种方块)

两式相加:f[n]=3*f[n-2]+2*f[n-4]+2*f[n-6]+...+2*f[0]-----------1

由上式得出:f[n-2]=3*f[n-4]+2*f[n-6]+2*f[n-8]+...+2*f[0]------2

将2代入1式得出最后递归式:f[n]=4*f[n-2]-f[n-4]



Code:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<cctype>
#include<queue>
#include<math.h>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define N 1000005
using namespace std;

int main(){
	int n;
	int a[35];
	a[0]=1,a[2]=3;
	for(int i=4;i<=30;i+=2) a[i]=4*a[i-2]-a[i-4];
	while(~scanf("%d",&n)){
		if(n==-1) break;
		if(n%2) printf("0\n");
		else printf("%d\n",a[n]);
	}
	return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值