移动端实时检测网络PeleeNet

PeleeNet是一种轻量级的深度学习网络,专为移动设备设计,基于DenseNet改进,结合SSD实现实时目标检测。其特点包括Two-Way DenseLayer、动态通道数、无压缩过渡层等,有效提升效率并保持高精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

论文:Pelee: A Real-Time Object Detection System on Mobile Devices 

Github:https://github.com/Robert-JunWang/Pelee

            https://github.com/nnUyi/PeleeNet

 

ICLR2018论文,主要提出了DesNet的变种版本PeleeNet,适用于移动端的轻量级网络。

 

PeleeNet主要特点:

(1)Two-Way Dense Layer

Dense Block模块使用如上图所示的2-way dense layer。主要进行上面模块的堆叠

(2)Stem Block

PeleeNet的网络基础模块为上图所示的Stem Block

(3)Dynamic Number of Channels in Bottleneck Layer

瓶颈单元的channel数目根据输入feature map的大小来决定,保证输出的通道数不超过输入的通道数。与原始DenseNet相比,可以节省28.5%的计算消耗,并且对精度影响很小。

(4)Transition Layer without Compression

传统DenseNet中Transition Layer的压缩率会影响特征的表达。PeleeNet中的Transition Layer的输入和输出通道数一样。

(5)Composite Function

为了提高速度,采用了conv+BN+relu的组合,而不是conv+relu+BN的组合。可以进行卷积和BN的合并计算操作。当然精度会略有降低。

 

SSD+PeleeNet:

(1)主要使用了5个scale的feature map,(19 x 19, 10 x 10, 5 x 5,3 x 3, 1 x 1),为了减少计算量没有使用38 x 38的feature map

(2)在每一个scale的feature map进入分类和回归之前,使用了ResBlock模块。

(3)ResBlock模块中使用1*1卷积,相比3*3卷积,可以减少21.5%的计算量。

(4)提供了IOS上基于sdd+PeleeNet的解决方案。

 

PeleeNet网络结构:

 

训练学习率策略:

学习率采用cos方式的学习率变化方法,假设epoch为t,t <= 120,则最终学习率为 0.5 ∗ lr ∗ (cos(π ∗ t=120) + 1)

 

实验结果:

VOC结果:

COCO结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值