链接:http://poj.org/problem?id=3694
给出无向图,动态加边,求每次加边后图中桥的个数。
缩点求并查集,然后按照DFS序找LCA维护桥的个数。
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <queue>
#include <cmath>
#include <string>
#include <map>
#include <stack>
using namespace std;
#define INF 0x3f3f3f3f
#define MAXN 100007
#define MAXM 200007
const int mod=499999;
#define eps 1e-8
int ind,head[MAXN];
struct node
{
int u,v,next,vis;
}edge[MAXM<<1];
void add_(int u, int v)
{
edge[ind].u=u;
edge[ind].v=v;
edge[ind].vis=0;
edge[ind].next=head[u];
head[u]=ind++;
edge[ind].u=v;
edge[ind].v=u;
edge[ind].vis=0;
edge[ind].next=head[v];
head[v]=ind++;
}
int low[MAXN],DFN[MAXN],stack_[MAXN],in_stack[MAXN],top,dps,cir;
int set_[MAXN],cnt,pre[MAXN],bri[MAXN];
int find_set(int x)
{
if(set_[x]==-1)return x;
return set_[x]=find_set(set_[x]);
}
bool link_set(int x, int y)
{
x=find_set(x);
y=find_set(y);
if(x==y)return 0;
set_[y]=x;
return 1;
}
void Tarjan(int u)
{
in_stack[u]=1;
low[u]=DFN[u]=++dps;
stack_[top++]=u;
for(int i=head[u]; i+1; i=edge[i].next)
{
int v=edge[i].v;
if(edge[i].vis)continue;
edge[i].vis=edge[i^1].vis=1;
if(!DFN[v])
{
pre[v]=u;
Tarjan(v);
low[u]=min(low[u],low[v]);
if(low[v]>DFN[u])
cnt++;
else link_set(u,v);
}
else if(in_stack[v])
low[u]=min(low[u],DFN[v]);
}
}
void LCA(int x, int y)
{
if(DFN[x]>DFN[y])
swap(x,y);
if(find_set(x)==find_set(y))return ;
int bb=y,aa=x;
while(DFN[y]>DFN[x])
{
y=pre[y];
if(link_set(bb,y))
cnt--;
}
while(x!=y)
{
x=pre[x];
if(link_set(aa,x))
cnt--;
}
}
int main()
{
int n,m,cas=0;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==m&&m==0)break;
int a, b;
cnt=dps=cir=ind=0;
memset(head,-1,sizeof(head));
memset(DFN,0,sizeof(DFN));
memset(low,0,sizeof(low));
memset(set_,-1,sizeof(set_));
for(int i=0; i<m; ++i)
{
scanf("%d%d",&a,&b);
add_(a,b);
}
Tarjan(1);
int qu;
scanf("%d",&qu);
printf("Case %d:\n",++cas);
for(int i=0; i<qu; ++i)
{
scanf("%d%d",&a,&b);
LCA(a,b);
printf("%d\n",cnt);
}
}
return 0;
}
/*
3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0
*/