HDU-5584-LCM Walk(数学)

本文介绍了一道关于数学和算法的题目,主要内容是如何计算从一个起始网格通过特定的跳跃方式到达目标网格的不同路径数量。文章给出了问题描述、输入输出样例及解析,并附带了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584


Description

A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered 1,2,⋯ from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach (ex,ey)!

Input

First line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ 1≤T≤1000.
⋅ 1≤ex,ey≤109.

Output

For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1 and y is the number of possible starting grids.

Sample Input

3
6 10
6 8
2 8

Sample Output

Case #1: 1
Case #2: 2
Case #3: 3




题意:

给你(x,y) 然后可以走到(x+lcm(x,y),y)或者走到(x,y+lcm(x,y))

然后现在给你一个位置,问你起点有多少种。

假设x = at,y =bt ;

所以(at,bt),那么下一步就可以走到(at(1+b),bt)或者走到(at,(1+a)bt)

除一下gcd,那么我们走到了(x,y) 上一步就是 (x/(y+1),y)和(x,y/(x+1))。


//#include<bits/stdc++.h>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
#define MAXN 200005
long long mod = 1e9+7;
int get_gcd(int x,int y)
{
    if(!x)return y;
    return get_gcd(y%x,x);
}
int main()
{
    int n,x,y;
    scanf("%d",&n);
    for(int i=1; i<=n; ++i)
    {
        int ans=0;
        scanf("%d%d",&x,&y);
        int c=get_gcd(x,y);
        x/=c,y/=c;
        if(x>y)swap(x,y);
        while(y%(x+1)==0)
        {
            ans++;
            y/=(x+1);
            if(x>y)swap(x,y);
        }
        printf("Case #%d: %d\n",i,++ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值