TensorFlow 文本识别

该博客详细介绍了TensorFlow的工作原理,包括如何处理数据并将其传递给神经网络输入,以及如何构建神经网络进行文本识别任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
import numpy as np
import tensorflow as tf
from collections import Counter
from sklearn.datasets import fetch_20newsgroups

How TensorFlow works

import tensorflow as tf
my_graph = tf.Graph()
with tf.Session(graph=my_graph) as sess:
    x = tf.constant([1,3,6]) 
    y = tf.constant([1,1,1])
    op = tf.add(x,y)
    result = sess.run(fetches=op)
    print(result)
[2 4 7]

How to manipulate data and pass it to the Neural Network inputs

vocab = Counter()

text = "Hi from Brazil"

for word in text.split(' '):
    word_lowercase = word.lower()
    vocab[word_lowercase]+=1
        
def get_word_2_index(vocab):
    word2index = {}
    for i,word in enumerate(vocab):
        word2index[word] = i
        
    return word2index
word2index = get_word_2_index(vocab)

total_words = len(vocab)
matrix = np.zeros((total_words),dtype=float)

for word in text.split():
    matrix[word2index[word.lower()]] += 1
    
print("Hi from Brazil:", matrix)
Hi from Brazil: [ 1.  1.  1.]
matrix = n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值