根号 \sqrt[5]{777} 7775 \sqrt[5]{777} 5 7 7 7 连乘 \prod_{i=1}^{n} ∏i=1n\prod_{i=1}^{n} i = 1 ∏ n Latex插入代码并高亮显示 https://blog.youkuaiyun.com/da_kao_la/article/details/83105948 插入图片
\begin{figure}
\centering
\includegraphics[width=4in]{2.jpg}
\caption{对噪声图像2去噪 PSNR=33dB}
\end{figure}
并排插入图片
可以参考
https://blog.youkuaiyun.com/a6822342/article/details/80533135
https://blog.youkuaiyun.com/u012428169/article/details/78014458/
\begin{figure}
\centering
\begin{minipage}[t]{0.45\linewidth}
\centering
\includegraphics[width=3in]{Figure_1.png}
\caption{对噪声图像1去噪 PSNR随卷积核大小的变化}
\end{minipage}
\begin{minipage}[t]{0.45\linewidth}
\centering
\includegraphics[width=3in]{Figure_2.png}
\caption{对噪声图像2去噪 PSNR随卷积核大小的变化}
\end{minipage}
\end{figure}
\begin{abstract}
....
\end{abstract}
\newtheorem{assumption}{Assumption}
\begin{assumption}
If
\end{assumption}
\newtheorem{lemma}{Lemma}[section]
\begin{lemma} \label{lemma1}
\end{lemma}
\newtheorem{thm}{\bf Theorem}[section]
\begin{thm}\label{thm1}
Suppose system (\ref{l1}) satisfies Assumption (\ref{mim1}), the closed-loop system consisting of
system (\ref{l1}), the disturbance observer (\ref{g1}) and the proposed controller (\ref{n3}) is semi-globally ISS.
\end{thm}
\begin{proof}
***
\end{proof}
\viskp\baselineskip