题目链接:点击打开链接
思路:
我们首先假设这个图都是全0的
用n个点代表行,m个点代表列
用源点向行连一个值x 表示每行1的个数,向列连一个y表示每列y个1
则若行i和列j之间流过一个流量就表示 (i,j) 点填了1
那么若原来图中(i,j)点为0 则花费就是1
若原图中(i,j)点是1,则花费是-1
如此枚举x跑个费用流就好了
==居然把我多年的白书费用流坑掉了。。。
zkw走起啊
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h>
#include <queue>
#include <set>
#include <algorithm>
using namespace std;
#define maxn 110
#define maxm 100000
#define inf 0x3f3f3f3f
struct MaxFlow
{
int size, n;
int st, en, maxflow, mincost;
bool vis[maxn];
int net[maxn], pre[maxn], cur[maxn], dis[maxn];
std::queue <int> Q;
struct EDGE
{
int v, cap, cost, next;
EDGE(){}
EDGE(int a, int b, int c, int d)
{
v = a, cap = b, cost = c, next = d;
}
}E[maxm<<1];
void init(int _n)
{
n = _n, size = 0;
memset(net, -1, sizeof(net));
}
void add(int u, int v, int cap, int cost)
{
E[size] = EDGE(v, cap, cost, net[u]);
net[u] = size++;
E[size] = EDGE(u, 0, -cost, net[v]);
net[v] = size++;
}
bool adjust()
{
int v, min = inf;
for(int i = 0; i <= n; i++)
{
if(!vis[i])
continue;
for(int j = net[i]; v = E[j].v, j != -1; j = E[j].next)
if(E[j].cap)
if(!vis[v] && dis[v]-dis[i]+E[j].cost < min)
min = dis[v] - dis[i] + E[j].cost;
}
if(min == inf)
return false;
for(int i = 0; i <= n; i++)
if(vis[i])
cur[i] = net[i], vis[i] = false, dis[i] += min;
return true;
}
int augment(int i, int flow)
{
if(i == en)
{
mincost += dis[st] * flow;
maxflow += flow;
return flow;
}
vis[i] = true;
for(int j = cur[i], v; v = E[j].v, j != -1; j = E[j].next)
{
if(!E[j].cap)
continue;
if(vis[v] || dis[v]+E[j].cost != dis[i])
continue;
int delta = augment(v, std::min(flow, E[j].cap));
if(delta)
{
E[j].cap -= delta;
E[j^1].cap += delta;
cur[i] = j;
return delta;
}
}
return 0;
}
void spfa()
{
int u, v;
for(int i = 0; i <= n; i++)
vis[i] = false, dis[i] = inf;
dis[st] = 0;
Q.push(st);
vis[st] = true;
while(!Q.empty())
{
u = Q.front(), Q.pop();
vis[u] = false;
for(int i = net[u]; v = E[i].v, i != -1; i = E[i].next)
{
if(!E[i].cap || dis[v] <= dis[u] + E[i].cost)
continue;
dis[v] = dis[u] + E[i].cost;
if(!vis[v])
{
vis[v] = true;
Q.push(v);
}
}
}
for(int i = 0; i <= n; i++)
dis[i] = dis[en] - dis[i];
}
int zkw(int s, int t, int need)
{
st = s, en = t;
spfa();
mincost = maxflow = 0;
for(int i = 0; i <= n; i++)
vis[i] = false, cur[i] = net[i];
do
{
while(augment(st, inf))
memset(vis, false, sizeof(vis));
}while(adjust());
if(maxflow < need)
return -1;
return mincost;
}
}zkw;
char mp[50][50];
int n, m, siz;
int work(int x){
int all = n*x;
if(all % m || all > n*m)return inf;
int y = all / m;
zkw.init(n+m+2);
int from = n+m+1, to = n + m + 2;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
if(mp[i][j]=='1')
zkw.add(i, n+j, 1, -1);
else
zkw.add(i, n+j, 1, 1);
}
for(int i = 1; i <= n; i++)
zkw.add(from, i, x, 0);
for(int i = 1; i <= m; i++)
zkw.add(n+i, to, y, 0);
return siz + zkw.zkw(from, to, -1);
}
void input(){
scanf("%d %d",&n,&m);
siz = 0;
for(int i = 1; i <= n; i++) {
scanf("%s", mp[i]+1);
for(int j = 1; j <= m; j++)
siz += mp[i][j] == '1';
}
}
int main(){
int Cas = 0, T; scanf("%d",&T);
while(T--){
input();
int ans = inf;
for(int i = 0; i <= m; i++)
ans = min(ans, work(i));
printf("Case %d: %d\n", ++Cas, ans);
}
return 0;
}