Problem
Given an array A of integers, return the number of (contiguous, non-empty) subarrays that have a sum divisible by K.
Example 1:
Input: A = [4,5,0,-2,-3,1], K = 5
Output: 7
Explanation: There are 7 subarrays with a sum divisible by K = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
Solution
使用prefix sums的方法。
用一个presum变量记录当前位置 i 的总和A[0]+...+A[i]A[0]+...+A[i]A[0]+...+A[i],取key=presum%Kkey=presum\%Kkey=presum%K。
那么对于任意 i 和(A[0]+...+A[i])%K==key(A[0]+...+A[i])\%K==key(A[0]+...+A[i])%K==key,若存在 j<i 有(A[0]+...+A[j])%K==key(A[0]+...+A[j])\%K==key(A[0]+...+A[j])%K==key,则等价于(A[j+1]+...+A[i])%K==0(A[j+1]+...+A[i])\%K==0(A[j+1]+...+A[i])%K==0。所以用一个hashmap来记录presum%K=keypresum\%K=keypresum%K=key的个数。
特别的,(A[0]+...+A[i])%K==((A[0]+A[i−1])%K+A[i])%K(A[0]+...+A[i])\%K == ((A[0]+A[i-1])\%K+A[i])\%K(A[0]+...+A[i])%K==((A[0]+A[i−1])%K+A[i])%K
class Solution:
def subarraysDivByK(self, A: 'List[int]', K: 'int') -> 'int':
res = 0
hashmap = {0:1}
presum = 0
for a in A:
presum = (presum+a)%K
if presum in hashmap.keys():
res += hashmap[presum]
hashmap[presum] += 1
else:
hashmap[presum] = 1
return res