CodeForces 1081B Farewell Party

本文详细解析了Codeforces竞赛中B题Farewell Party的算法思路及实现代码,介绍了如何根据参与者陈述找出可能的帽子分配方案,确保每个人看到的异类帽子数量与所述相符。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B - Farewell Party

https://codeforces.com/contest/1081/problem/B

Description

Chouti and his classmates are going to the university soon. To say goodbye to each other, the class has planned a big farewell party in which classmates, teachers and parents sang and danced.

Chouti remembered that n persons took part in that party. To make the party funnier, each person wore one hat among n kinds of weird hats numbered 1,2,…n. It is possible that several persons wore hats of the same kind. Some kinds of hats can remain unclaimed by anyone.

After the party, the i-th person said that there were ai persons wearing a hat differing from his own.

It has been some days, so Chouti forgot all about others’ hats, but he is curious about that. Let bi be the number of hat type the i-th person was wearing, Chouti wants you to find any possible b1,b2,…,bn that doesn’t contradict with any person’s statement. Because some persons might have a poor memory, there could be no solution at all.

Input

The first line contains a single integer n (1≤n≤105), the number of persons in the party.

The second line contains n integers a1,a2,…,an (0≤ai≤n−1), the statements of people.

Output

If there is no solution, print a single line "Impossible".

Otherwise, print “Possible” and then n integers b1,b2,…,bn (1≤bi≤n).

If there are multiple answers, print any of them.

Sample Input

3
0 0 0
5
3 3 2 2 2
4
0 1 2 3

Sample Output

Possible
1 1 1
Possible
1 1 2 2 2
Impossible

Hint

In the answer to the first example, all hats are the same, so every person will say that there were no persons wearing a hat different from kind 1.

In the answer to the second example, the first and the second person wore the hat with type 1 and all other wore a hat of type 2.

So the first two persons will say there were three persons with hats differing from their own. Similarly, three last persons will say there were two persons wearing a hat different from their own.

In the third example, it can be shown that no solution exists.

In the first and the second example, other possible configurations are possible.

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=100005;
int n,k=1,flag=0;
int sum[maxn],num[maxn],num1[maxn],ans[maxn],cou[maxn],dis[maxn];
void check()//检查ans数组是否符合题目意思 
{
	for(int i=1;i<=n;i++)
		cou[ans[i]]++;//计算和自己帽子相同的数量 
	for(int i=1;i<=n;i++)
		if(cou[ans[i]]+sum[i]!=n) flag=1;
	//如果看见的不同的冒子的数量加上和自己相同数量不等于n则不可能 
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&sum[i]);
		num[sum[i]]=n-sum[i];//和自己帽子相同的数量 
		cou[sum[i]]++;//帽子数为sum[i]的人的数量 
	}
	for(int i=1;i<=n;i++)
	{
		if(num[sum[i]]>cou[sum[i]])
			flag=1;
		num1[sum[i]]=num[sum[i]];
	}
	dis[sum[1]]=ans[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(dis[sum[i]]==0) {
			ans[i]=dis[sum[i]]=++k;
		}
		else {
			if(num[sum[i]]==cou[sum[i]]) {
					ans[i]=dis[sum[i]];
			}
			else {
				if(num[sum[i]]>1) {
					ans[i]=dis[sum[i]];
					num[sum[i]]--;
				}
				else {
					ans[i]=dis[sum[i]]=++k;
					num[sum[i]]=num1[sum[i]];
				}
			}
		}
	}
	fill(cou,cou+(n+1),0);//fill函数归零 
	check();
	if(k>n||flag)
		printf("Impossible\n");
	else {
		printf("Possible\n");
		for(int i=1;i<=n;i++)
			printf("%d ",ans[i]);
		printf("\n");
	}
	return 0;
}
### 关于 Codeforces 1853B 的题解与实现 尽管当前未提供关于 Codeforces 1853B 的具体引用内容,但可以根据常见的竞赛编程问题模式以及相关算法知识来推测可能的解决方案。 #### 题目概述 通常情况下,Codeforces B 类题目涉及基础数据结构或简单算法的应用。假设该题目要求处理某种数组操作或者字符串匹配,则可以采用如下方法解决: #### 解决方案分析 如果题目涉及到数组查询或修改操作,一种常见的方式是利用前缀和技巧优化时间复杂度[^3]。例如,对于区间求和问题,可以通过预计算前缀和数组快速得到任意区间的总和。 以下是基于上述假设的一个 Python 实现示例: ```python def solve_1853B(): import sys input = sys.stdin.read data = input().split() n, q = map(int, data[0].split()) # 数组长度和询问次数 array = list(map(int, data[1].split())) # 初始数组 prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + array[i - 1] results = [] for _ in range(q): l, r = map(int, data[2:].pop(0).split()) current_sum = prefix_sum[r] - prefix_sum[l - 1] results.append(current_sum % (10**9 + 7)) return results print(*solve_1853B(), sep='\n') ``` 此代码片段展示了如何通过构建 `prefix_sum` 来高效响应多次区间求和请求,并对结果取模 \(10^9+7\) 输出[^4]。 #### 进一步扩展思考 当面对更复杂的约束条件时,动态规划或其他高级技术可能会被引入到解答之中。然而,在没有确切了解本题细节之前,以上仅作为通用策略分享给用户参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值