约瑟夫环

约瑟夫环问题:n个人(编号0 ~ n-1)顺序围成一个圈,给定一个整数k,从1号开始报数, 当报数到k后,该人退出,然后在从下一人从1开始报数,每次报数到k后则该人退出,问对于给定n、k,当剩下最后一个幸存者,该人编号是多少。

最简单的方法是用一线性表模拟其过程,但如果给定的n, k很大时,这样的时间复杂度为O(nk),未免太低效了。而对于约瑟夫环正好有更好的解决方法。

对与n个人约瑟夫环问题,我们对其排列成:

0, 1, 2, ..., n - 1  ==>

1, 2,..., k , ... ,n - 1, n ( 因为n个人围成圈,所以n对应0)      1#

第一次报数到k时,第k人出列。对  1#  变形为:

k, k + 1, ..., n, 1, 2, ... , k - 1           2#

对 2# 上各位减去k,得到:

0,1, 2, ..., n - 1 (减后模n)                   3#

1#中的k号(幸存者)对应3#中的0号,而这样刚好剩下的1, 2, ...n - 1人又成了一个n - 1的约瑟夫环。

假如  3#  的解是 x,那么2对应不就是 x + k 吗。这样得到了一个递归公式:

f(n, k) =  ( f(n - 1, k) + k) % n    (n > 1)

 or

f(n, k)  =  1     (n <= 1)

其他的约瑟夫环问题的变形也可以根据这样的递推方法求解。


维基 约瑟夫环介绍:

http://zh.wikipedia.org/zh/%E7%BA%A6%E7%91%9F%E5%A4%AB%E6%96%AF%E9%97%AE%E9%A2%98

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值