算法导论---DP之钢条切割问题

本文介绍了如何使用动态规划解决钢条切割问题,以获得最大销售收益。通过对不同长度钢条的最优切割方案分析,揭示了动态规划求解过程,并给出了一般性的递推公式。例如,对于8英寸的钢条,应当根据价格表和最优解策略确定最佳切割方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设公司出售一段长度为i英寸的钢条的价格为Pi(i = 1, 2, ...单位:美元),下面给出了价格表样例:

长度i     1     2     3 4  5  6     7  8  9  10

价格Pi  1     5     8 9  10  17   17  20  24  30

切割钢条的问题是这样的:给定一段长度为n英寸的钢条和一个价格表Pi,求切割方案,使得销售收益Rn最大。

当然,如果长度为n英寸的钢条价格Pn足够大,最优解可能就是完全不需要切割。

对于上述价格表样例,我们可以观察所有最优收益值Ri及对应的最优解方案:

R1 = 1,切割方案1 = 1(无切割)

R2 = 5,切割方案2 = 2(无切割)

R3 = 8, 切割方案3 = 3(无切割)

R4 = 10, 切割方案4 = 2 + 2

R5 = 13, 切割方案5 = 2 + 3

R6 = 17, 切割方案6 = 6(无切割)

R7 = 18, 切割方案7 = 1 + 6或7 = 2 + 2 + 3

R8 = 22, 切割方案8 = 2 + 6

R9 = 25, 切割方案9 = 3 + 6

R10 = 30,切割方案10 = 10(无切割)

更一般地,对于Rn(n >= 1),我们可以用更短的钢条的最优切割收益来描述它:

Rn = max(Pn, R1 + Rn-1, R2 + Rn-2,...,Rn-1 + R1)

首先将钢条切割为长度为i和n - i两段,接着求解这两段的最优切割收益Ri和Rn - i

(每种方案的最优收

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值