使用KNN算法识别数字

本文详细介绍了如何使用KNN算法构建一个手写数字识别系统。通过处理后的32x32像素黑白图像,文章阐述了算法的步骤,包括计算距离、排序、选择最近邻居和确定分类。提供了训练和测试数据集,并展示了算法实现的Python代码,涉及numpy库中的shape、argsort、tile等函数的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


KNN算法作为一种重要的分类算法,这里一步步地构造使用k近邻分类器的手写识别系统。为了简单起见,这里构造的系统只能识别数字0到9,参见下图。需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小 :宽高是32像素x32像素的黑白图像。尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理解,我们还是将图像转换为文本格式。


digits 目录下有两个文件夹,分别是:

  • trainingDigits:训练数据,1934个文件,每个数字大约200个文件。
  • testDigits:测试数据,946个文件,每个数字大约100个文件。

每个文件中存储一个手写的数字,文件的命名类似0_7.txt,第一个数字0表示文件中的手写数字是0,后面的7是个序号。

我们使用目录trainingDigits中的数据训练分类器,使用目录testDigits中的数据测试分类器的效果。两组数据没有重叠,你可以检查一下这些文件夹的文件是否符合要求。根据这些数据我们开始实现KNN算法。

我们需要打开一个 Xfce 终端,输入 ipython 进入到交互式模式来边写代码边测试。

k-近邻(k-NN)算法我们在理论学习部分已经有所了解,本节内容将实现这个算法的核心部分:计算“距离”。

当我们有一定的样本数据和这些数据所属的分类后,输入一个测试数据,我们就可以根据算法得出该测试数据属于哪个类别,此处的类别为0-9十个数字,就是十个类别。

算法实现过程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值