1、社区及社区发现:
网络图内部连接比较紧密的节点子集合对应的子图叫做社区(community),各社区节点集合彼此没有交集的称为非重叠型(disjoint)社区,有交集的称为重叠型(overlapping)社区。对给定的网络图寻找其社区结构的过程称为“社区发现”。大体上看,社区发现的过程就是一种聚类的过程。
2、基本思想
标签传播算法是不重叠社区发现的经典算法,其基本思想是:将一个节点的邻居节点的标签中数量最多的标签作为该节点自身的标签。给每个节点添加标签(label)以代表它所属的社区,并通过标签的“传播”形成同一标签的“社区”结构。
给每个节点添加标签(label)以代表它所属的社区,并通过标签的“传播”形成同一标签的“社区”结构。一个节点的标签取决于它邻居节点的标签:假设节点z的邻居节点有z1至zk,那么哪个社区包含z的邻居节点最多z就属于那个社区(或者说z的邻居中包含哪个社区的标签最多,z就属于哪个社区)。优点是收敛周期短,无需任何先验参数(不需事先指定社区个数和大小),算法执行过程中不需要计算任何社区指标。
时间复杂度接近线性:对顶点分配标签的复杂度为O(n),每次迭代时间为O( m),找出所有社区的复杂度为O (n +m),但迭代次数难以估计
3、传播过程:
1)初始时,给每个节点一个唯一的标签;
2)每个节点使用其邻居节点的标签中最多的标签来更新自身的标签。
3)反复执行步骤2),直到每个节点的标签都不再发生变化为止。
一次迭代过程中一个节点标签的更新可以分为同步和异步两种。所谓同步更新,即节点z在第t次迭代的label依据于它的邻居节点在第t-1次迭代时所得的label;异步更新,即节点z在第t次迭代的label依据于第t次迭代已经更新过label的节点和第t次迭代未更新过label的节点在第t-1次迭代时的label。
注:
1、迭代次数设定一个阈值,可以防止过度运算;
2、对于二分图等网络结构,同步更新会引起震荡;