1.简介
ShuffleNet V1是Face++于2017年提出的轻量级深层神经网络。作者在2018年又提出了基于V1版本改进的ShuffleNet V2版本。ShuffleNet V1中的核心思想为group结合shuffle操作来改进传统的ResNet的block。而ShuffleNet V2则根据相同的FLOPs(float-point operations,乘积数量)情况下模型速度差别仍然很大这一现象,指出内存访问损失时间和FLOPS共同决定了网络在实际落地时训练和运行的速度。最终通过实验说明了 卷积层输入输出通道数、group操作数、网络模型分支数以及Elementwise操作数,这四个因素对最终模型速度的影响。ShuffleNet V2根据上述实验结合V1中block的架构对网络结构做出了一定的改进,提升了模型实际引用时的速度。
ShuffleNet V1论文地址:https://arxiv.org/abs/1707.01083
ShuffleNet V2论文地址:https://arxiv.org/abs/1807.11164
ShuffleNet V1/V2代码(caffe):https://github.com/farmingyard/ShuffleNet
ShuffleNet V1代码(Tensorflow):https://github.com/MG2033/ShuffleNet
ShuffleNet V1代码(Pytorch):https://github.com/jaxony/Shuffl