论文阅读笔记_001 Micro-Bathymetry Data Acquisition for 3D Reconstruction of Objects on the sea floor

这篇博客解析了2017年IEEEOceans会议上的一篇论文,关注海底3D物体重构中微地形数据的获取方法,包括任务规划范例和声呐数据处理技术,如BDI、MaxsalongDOA和WMT。重点介绍了REMUS-100平台的多波束声呐配置及数据处理流程。

立一个FLAG

论文阅读笔记的编号是三位数,希望自己能够坚持下来写到999。

论文来源介绍

这次记录的论文是一篇发表于 2017 年的 IEEE Oceans 会议论文。作者是 Diogo.Machado, Thomas Furfaro , Samantha Dugelay ,意大利人,属于北约(NATO)科学与技术组织,海事研究中心。

Machado, D., Furfaro, T., Dugelay, S., & Ieee. (2017). Micro-Bathymetry Data Acquisition for 3D Reconstruction of Objects on the Sea Floor. In Oceans 2017 - Aberdeen.

研究目的

本文的题目是海底目标3维重建过程中的微地形数据采集(Acquisition),由于AUV挂载的多波束声呐横向覆盖范围有限且航行器存在导航偏差,单次的航行一般不能完全覆盖目标物体。针对以上问题作者提出了一种兼顾探测效率和覆盖面积的任务规划方法(范例),除此之外本文还介绍了一些适用于多波束声呐的数据处理方法。

航行器基本情况介绍

文中采用以REMUS-100为载体,通过LBL系统进行水下导航。AUV搭载的有:ADCP、CTD、双频侧扫声呐和一个声学调制解调器。

REMUS 100
此外,还搭载了一个多波束声呐(文章的重点研究对象)

Please revise the paper:Accurate determination of bathymetric data in the shallow water zone over time and space is of increasing significance for navigation safety, monitoring of sea-level uplift, coastal areas management, and marine transportation. Satellite-derived bathymetry (SDB) is widely accepted as an effective alternative to conventional acoustics measurements over coastal areas with high spatial and temporal resolution combined with extensive repetitive coverage. Numerous empirical SDB approaches in previous works are unsuitable for precision bathymetry mapping in various scenarios, owing to the assumption of homogeneous bottom over the whole region, as well as the limitations of constructing global mapping relationships between water depth and blue-green reflectance takes no account of various confounding factors of radiance attenuation such as turbidity. To address the assumption failure of uniform bottom conditions and imperfect consideration of influence factors on the performance of the SDB model, this work proposes a bottom-type adaptive-based SDB approach (BA-SDB) to obtain accurate depth estimation over different sediments. The bottom type can be adaptively segmented by clustering based on bottom reflectance. For each sediment category, a PSO-LightGBM algorithm for depth derivation considering multiple influencing factors is driven to adaptively select the optimal influence factors and model parameters simultaneously. Water turbidity features beyond the traditional impact factors are incorporated in these regression models. Compared with log-ratio, multi-band and classical machine learning methods, the new approach produced the most accurate results with RMSE value is 0.85 m, in terms of different sediments and water depths combined with in-situ observations of airborne laser bathymetry and multi-beam echo sounder.
02-18
> 位置:path (第 109 行) 位置: TMD (第 6 行) Welcome to TMD: Tidal Model Driver! TMD FILE NAME/FORMAT CONVENTION (MUST follow!): 1. TMD supports format of models downloaded from: , http://volkov.oce.orst.edu/tides http://www.esr.org/polar_tides_models 2. Elevation file name should start from 'h'. 3. Transport file name should start from 'UV'. 4. Bathymetry grid file name should start from 'g'. 5. If grid is uniform in km string 'km' should be found either in model file names or in grid file name. 6. For any tidal model a control file starting from 'Model_*' ib subdirectory TMD/DATA should be given. The file MUST contain 3 lines: <Elevation file name> <Transport file name> <Bathymetry grid file name> If the model files are NOT in TMD/DATA, exact path should be included. If the model files are in TMD/DATA, no path in file names is needed. If grid is uniform in km the NAME of function converting lat,lon to x,y and back should be provided in 4-th line, for example:'xy_ll' for Arctic or 'xy_ll_S' for Antarctic The model is on uniform grid in lat,lon Loading TMD (Tidal Model Driver)...done See button tips for HELP. Type 'help tmd_extract_HC','help tmd_tide_pred', 'help tmd_ellipse', Type 'help tmd_get_coeff','help tmd_get_ellipse', if you wish to use the scripts instead of GUI. Model and files are in D:\TMD2.5\DATA\MyArea\SCS\h_zhanjiangbay and D:\TMD2.5\DATA\MyArea\SCS\uv_zhanjiangbay. Bathymetry grid file is in D:\TMD2.5\DATA\MyArea\SCS\grid_zhanjiangbay. Input file examples are in LAT_LON Programmed by: Lana Erofeeva: TMD release 2.5
11-29
独立储能的现货电能量与调频辅助服务市场出清协调机制(Matlab代码实现)内容概要:本文围绕“独立储能的现货电能量与调频辅助服务市场出清协调机制”展开,提出了一种基于Matlab代码实现的优化模型,旨在协调独立储能系统在电力现货市场与调频辅助服务市场中的联合出清问题。文中结合鲁棒优化、大M法和C&CG算法处理不确定性因素,构建了多市场耦合的双层或两阶段优化框架,实现了储能资源在能量市场和辅助服务市场间的最优分配。研究涵盖了市场出清机制设计、储能运行策略建模、不确定性建模及求解算法实现,并通过Matlab仿真验证了所提方法的有效性和经济性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事电力市场、储能调度相关工作的工程技术人员。; 使用场景及目标:①用于研究独立储能在多电力市场环境下的协同优化运行机制;②支撑电力市场机制设计、储能参与市场的竞价策略分析及政策仿真;③为学术论文复现、课题研究和技术开发提供可运行的代码参考。; 阅读建议:建议读者结合文档中提供的Matlab代码与算法原理同步学习,重点关注模型构建逻辑、不确定性处理方式及C&CG算法的具体实现步骤,宜在掌握基础优化理论的前提下进行深入研读与仿真调试。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值