Tensorflow相关基础概念

本文介绍了TensorFlow中三种基本操作:使用tf.placeholder定义占位符以便稍后输入数据;使用tf.matmul进行矩阵相乘;使用tf.Variable定义变量,并通过会话运行初始化及计算过程。
部署运行你感兴趣的模型镜像
1. tf.placeholder
placeholder is simply a variable that we will assign data to at a later date. It allows us to create our operations and build our computation graph, without needing the data. In TensorFlow terminology, we then feed data into the graph through these placeholders.
import tensorflow as tf x = tf.placeholder("float", None) y = x * 2 with tf.Session() as session: result = session.run(y, feed_dict={x: [1, 2, 3]}) print(result)
2. tf.matmul
矩阵相乘

3. tf.Variable

import tensorflow as tf x = tf.constant(35, name='x') y = tf.Variable(x + 5, name='y') print(y)  # y.value 0 model = tf.global_variables_initializer() with tf.Session() as session:     session.run(model)     print(session.run(y))  # 40





您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值