二值化方法介绍
https://www.cnblogs.com/Imageshop/p/3307308.html
https://github.com/jingweizhanghuai/image
图像增强方法介绍
https://www.cnblogs.com/molakejin/p/5766127.html
https://www.cnblogs.com/sleepwalker/p/3676600.html
图像暗角去除
https://www.cnblogs.com/Imageshop/p/6166394.html
边缘提取方法介绍
https://blog.youkuaiyun.com/weixin_38907330/article/details/80874031
直线检测方法介绍
https://blog.youkuaiyun.com/weixin_42647783/article/details/81200534
https://blog.youkuaiyun.com/leonardohaig/article/details/87907462
图像矩阵运算方法介绍
rotate
https://www.cnblogs.com/meteoric_cry/p/7987548.html
对极几何及空间中相机标定
https://blog.youkuaiyun.com/qq_36622009/article/details/104919996
https://blog.youkuaiyun.com/Ketal_N/article/details/83744626
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 28 14:20:43 2014
@author: duan
"""
import cv2
import numpy as np
from matplotlib import pyplot as plt
img1 = cv2.imread('myleft.jpg',0) #queryimage # left image
img2 = cv2.imread('myright.jpg',0) #trainimage # right image
sift = cv2.SIFT()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)
good = []
pts1 = []
pts2 = []
# ratio test as per Lowe's paper
for i,(m,n) in enumerate(matches):
if m.distance < 0.8*n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
pts

本文深入探讨了多种图像处理技术,包括二值化、图像增强、边缘提取、直线检测、图像矩阵运算、对极几何及空间中相机标定、TPS 2D插值、车牌生成、图像去模糊、图像合成、图像调试、颜色直方图、方向投影、有限对比适应性直方图均衡化等。同时提供了丰富的资源链接,帮助读者深入理解并应用这些技术。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



