时间序列预测——ARIMA(差分自回归移动平均模型)(1))

本文介绍了ARIMA(差分自回归移动平均模型)的时间序列预测,详细阐述了ARIMA的组成部分、阶数确定方法,如通过ACF和PACF确定p和q值,以及如何通过差分使序列平稳。建模流程包括序列平稳化、模型参数选择和模型残差检验。ARIMA模型适用于非平稳时间序列,通过AIC和BIC准则评估模型,并使用QQ图检查正态性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

时间序列预测——ARIMA(差分自回归移动平均模型)

ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;I为差分,d为使之成为平稳序列所做的差分次数(阶数);MA为"滑动平均",q为滑动平均项数,。ACF自相关系数能决定q的取值,PACF偏自相关系数能够决定q的取值。ARIMA原理:非平稳时间序列转化为平稳时间序列然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型

基本解释:

自回归模型(AR)

  • 描述当前值与历史值之间的关系用变量自身的历史时间数据对自身进行预测
  • 自回归模型必须满足平稳性的要求
  • 必须具有自相关性,自相关系数小于0.5不适用
  • p阶自回归过程的公式定义:

                                              

                                       ,y t-i 为前几天的值

PACF,偏自相关函数(决定p值),剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后x(t-k)对x(t)影响的相关程度。

移动平均模型(MA)

  • 移动平均模型关注的是自回归模型中的误差项的累加,移动平均法能有效地消除预测中的随机波动
  • q阶自回归过程的公式定义:

                                              

ACF,自相关函数(决定q值)反映了同一序列在不同时序的取值之间的相关性。x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的影响而这k-1个随机变量又都和x(t-k)具有相关关系,所 以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)的影响

                                           

03-08
### ARIMA Model for Time Series Forecasting #### Introduction to ARIMA The Autoregressive Integrated Moving Average (ARIMA) is a popular statistical method used for time series analysis and forecasting. This model combines three components: autoregression (AR), differencing (I for integrated), and moving average (MA). These elements work together to capture structure in the data, including trends and seasonality. An ARIMA model can be denoted as ARIMA(p,d,q): - **p**: Number of lag observations included in the model or the number of autoregressive terms. - **d**: Degree of first differencing involved in making the time series stationary. - **q**: Size of the moving window used for taking averages; it represents the number of moving average terms. This approach allows ARIMA models to effectively handle non-stationary datasets by applying differences until stationarity is achieved[^1]. #### Application Scenarios For scenarios involving large-scale time series prediction tasks where obtaining good zero-shot performance without additional training would significantly benefit downstream users due to reduced computational requirements, ARIMA offers an alternative solution compared with deep learning approaches like transformers mentioned earlier [^2]. However, unlike neural networks that may require vast amounts of historical information across various contexts, ARIMA focuses more on exploiting temporal dependencies within individual sequences through its parameters p, d, q settings. Moreover, when dealing specifically with influenza-like illness (ILI) prevalence cases over weeks during flu seasons from October till February peaks, incorporating week numbers into features alongside other transformations such as first-order and second-order differences could enhance predictive accuracy further beyond what basic configurations provide alone [^3]. #### Implementation Example Using Python's Statsmodels Library To implement an ARIMA model using Python’s `statsmodels` library: ```python import pandas as pd from statsmodels.tsa.arima.model import ARIMA # Load your dataset here data = ... model = ARIMA(data, order=(5, 1, 0)) results = model.fit() forecast = results.forecast(steps=7) print(forecast) ``` In this code snippet, replace `(5, 1, 0)` with appropriate values based on specific use case needs after conducting exploratory analyses or grid searches for optimal parameter tuning.
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值