获取数据:用的是FER-2013 这个数据库, 这个数据库一共有 35887 张人脸图像,这里只是做一个简单到仿真实验,为了计算方便,我们用其中到 30000张图像做训练,5000张图像做测试集,我们建立一个3个convolution layer 以及 3个 pooling layer 和一个 FC layer 的CNN 来做训练。
import string, os, sys
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import random
import tensorflow as tf
import pandas as pd
dir_name = '/local/sda/tensorflow/test/facere/fer2013'
print '----------- no sub dir'
print ('The folder path: ', dir_name)
NUM_CLASSES = 7
files = os.listdir(dir_name)
for f in files:
print (dir_name + os.sep + f)
#file_path = dir_name + os.sep+files[2]
file_path ='/local/sda/tensorflow/test/facere/fer2013/fer2013.csv'
print file_path
data = pd.read_csv(file_path, dtype='a')
label = np.array(data['emotion'])
img_data = np.array(data['pixels'])
N_sample = label.size
print label.size
print img_data.size
Face_data = np.zeros((N_sample, 48*48))
Face_label = np.zeros((N_sample, 7), dtype=int)
for i in range(N_sample):
#print i
x = img_data[i]
x = np.fromstring(x, dtype=float, sep=' ')
x_max = x.max()
x = x/(x_max+0.0001)
# print x_max
# print x
Face_data[i] = x
index = label[i]
#print index
Face_label[i, int(index)] = 1
#img_x = np.reshape(x, (48, 48))
#plt.subplot(10,10,i+1)
#plt.axis('off')
#plt.imshow(img_x, plt.cm.gray)
train_num = 30000
test_num = 5000
train_x = Face_data [0:train_num, :]
train_y = Face_label [0:train_num, :]
test_x =Face_data [train_num : train_num+test_num, :]
test_y = Face_label [train_num : train_num+test_num, :]
print ("All is well")
batch_size = 50
train_batch_num = train_num/batch_size
test_batch_num = test_num/batch_size
train_epoch = 2000
learning_rate = 0.001
# Network Parameters
n_input = 2304 # data input (img shape: 48*48)
n_classes = 7 # total classes
dropout = 0.5 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input], name='xx')
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='VALID')
def bias_variable(name, shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def weight_variable(name, shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
# Create model
def conv_net(x, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 48, 48, 1])
# conv1
# [width, height, depth, filters]
weight1 = weight_variable("weight1", [5, 5, 1, 64])
biases1 = bias_variable("biases1", [64])
conv1 = conv2d(x, weight1, biases1)
# pool0
pool0 = maxpool2d(conv1, k=2)
# norm0
#norm0 = tf.nn.lrn(pool0, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm0')
# conv2
# [width, height, depth, filters]
weight2 = weight_variable("weight2", [5, 5, 64, 64])
biases2 = bias_variable("biases2", [64])
conv2 = conv2d(pool0, weight2, biases2)
# pool1
pool1 = maxpool2d(conv2, k=2)
#conv3
weight3 = weight_variable("weight3", [4, 4, 64, 128])
biases3 = bias_variable("biases3", [128])
conv3 = conv2d(pool1, weight3, biases3)
#dropout
drop1 = tf.nn.dropout(conv3, 0.3)
drop1Reshape = tf.reshape(drop1, [-1, 12 * 12 * 128])
# full connect1
weights4 = weight_variable("weight4", [12 * 12 * 128, 3072]);
biases4 = bias_variable("biases4", [3072])
fc1 = tf.nn.relu(tf.matmul(drop1Reshape, weights4) + biases4)
# softmax, i.e. softmax(WX + b)
weights5 = weight_variable("weight5", [3072, 7])
biases5 = bias_variable("biases5", [7])
fc2 = tf.add(tf.matmul(fc1, weights5), biases5, "fc2")
#softmax = tf.nn.softmax(logits=fc2, "softmax")
return fc2
# Construct model
pred = conv_net(x, 0.5)
print "pred"
print pred
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
Train_ind = np.arange(train_num)
Test_ind = np.arange(test_num)
# Create a saver.
saver = tf.train.Saver(tf.all_variables())
#builder = tf.SavedModelBuilder(dir_name)
#tf.scalar_summary("loss", cost)
#tf.scalar_summary("accuracy", accuracy)
with tf.Session() as sess:
sess.run(init)
for epoch in range(0, train_epoch):
Total_test_loss = 0
Total_test_acc = 0
for train_batch in range (0, train_batch_num):
sample_ind = Train_ind[train_batch * batch_size:(train_batch + 1) * batch_size]
batch_x = train_x[sample_ind, :]
batch_y = train_y[sample_ind, :]
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if train_batch % batch_size == 0:
# Calculate loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print("Epoch: " + str(epoch+1) + ", Batch: "+ str(train_batch) + ", Loss= " + \
"{:.3f}".format(loss) + ", Training Accuracy= " + \
"{:.3f}".format(acc))
# Calculate test loss and test accuracy
for test_batch in range (0, test_batch_num):
sample_ind = Test_ind[test_batch * batch_size:(test_batch + 1) * batch_size]
batch_x = test_x[sample_ind, :]
batch_y = test_y[sample_ind, :]
test_loss, test_acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
Total_test_lost = Total_test_loss + test_loss
Total_test_acc =Total_test_acc + test_acc
Total_test_acc = Total_test_acc/test_batch_num
Total_test_loss =Total_test_lost/test_batch_num
print("Epoch: " + str(epoch + 1) + ", Test Loss= " + \
"{:.3f}".format(Total_test_loss) + ", Test Accuracy= " + \
"{:.3f}".format(Total_test_acc))
path = saver.save(sess, 'checkpoint.ckpt')
print "paht"
print path
os.system("rm -rf /tmp/facere")
tf.train.write_graph(sess.graph_def, "/tmp/facere", "test.pb", False) #proto
plt.subplot(2,1,1)
plt.ylabel('Test loss')
plt.plot(Total_test_loss, 'r')
plt.subplot(2,1,2)
plt.ylabel('Test Accuracy')
plt.plot(Total_test_acc, 'r')
print "All is well"
plt.show()
二、模型固化:调用saver = tf.train.Saver(tf.all_variables())、path = saver.save(sess, 'checkpoint.ckpt'),后会在每个节点生成checkpoint、checkpoint.ckpt、checkpoint.ckpt.inedx,checkpoint.ckpt.menta,这三文件保存了相关图和参数的信息。当我们要使用训练好的模型后,要把图和参数数据固化成一个文件方便调用
import os, argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util
dir = os.path.dirname(os.path.realpath(__file__))
def freeze_graph(model_folder):
# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_folder)
print checkpoint
input_checkpoint = checkpoint.model_checkpoint_path
# We precise the file fullname of our freezed graph
absolute_model_folder = "/".join(input_checkpoint.split('/')[:-1])
output_graph = absolute_model_folder + "/frozen_model.pb"
# Before exporting our graph, we need to precise what is our output node
# this variables is plural, because you can have multiple output nodes
output_node_names = "softmax"
# We clear the devices, to allow TensorFlow to control on the loading where it wants operations to be calculated
clear_devices = True
# We import the meta graph and retrive a Saver
print input_checkpoint + '.meta'
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
# We retrieve the protobuf graph definition
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
#We start a session and restore the graph weights
print "start a session"
with tf.Session() as sess:
saver.restore(sess, input_checkpoint)
print "restore"
# We use a built-in TF helper to export variables to constant
output_graph_def = graph_util.convert_variables_to_constants(
sess,
input_graph_def,
output_node_names.split(",") # We split on comma for convenience
)
# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
if __name__ == '__main__':
#parser = argparse.ArgumentParser()
#parser.add_argument("--model_folder", type=str, help="Model folder to export")
#args = parser.parse_args()
#print args.model_folder
#freeze_graph(args.model_folder)
freeze_graph("output")
调用模型:
import string, os, sys
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import random
import tensorflow as tf
import pandas as pd
from tensorflow.python.platform import gfile
import cv2
print sys.argv[1]
img = cv2.imread(sys.argv[1],cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img1 = cv2.resize(img, (48, 48))
#cv2.imshow("input", img1)
#print img1.shape
#cv2.waitKey()
img_data = np.array(img1)
x = img_data;
#x = np.fromstring(x, dtype=float, sep=' ')
x_max = x.max()
x = x/(x_max+0.0001)
Face_data = np.zeros((1, 48*48))
Face_data[0] = np.reshape(x, (1, 48*48))
img_x = np.reshape(Face_data[0, :], (48, 48))
#plt.axis('off')
#plt.imshow(img_x, plt.cm.gray)
#plt.show()
print("load graph")
graph = tf.Graph()
with graph.as_default():
with gfile.FastGFile("outputacc0.54/frozen_model.pb",'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
with tf.Session(graph=graph) as sess:
xx = sess.graph.get_tensor_by_name("xx:0")
#for op in graph.get_operations():
#print(op.name,op.values())
#print xx
pool0 = sess.graph.get_tensor_by_name("pool1:0")
pool0V= sess.run(pool0, {xx: Face_data[0, :]})
print pool0
#for i in range(128):
# plt.subplot(15,10, 1 + i)
# plt.axis('off')
# plt.imshow(pool0V[0, :, :, i], plt.cm.gray)
#plt.show()
#weightVa = sess.run(weight)
#print weightVa
#for i in range(128):
# plt.subplot(15,10, 1 + i)
# plt.axis('off')
# plt.imshow(weightVa[:, :, 0, 0], plt.cm.gray)
#plt.show()
# tf Graph input
softmax = sess.graph.get_tensor_by_name("softmax:0")
print softmax
result= sess.run(softmax, {xx: Face_data[0, :]})
softmax = tf.nn.softmax(result)
result = (sess.run(softmax))
#print result
list = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
for i in range(7):
print ('%s: %f'%(list[i], result[0,i]))
通过这个例子我们了解了深度学习的整一个流程
本文介绍了一种基于卷积神经网络(CNN)的人脸表情识别系统实现过程,该系统使用FER-2013数据集进行训练,并展示了如何将训练好的模型固化为单一文件以便于部署。
854

被折叠的 条评论
为什么被折叠?



