Cookie的有效期

Cookie的有效期

Cookie的maxAge决定着Cookie的有效期,单位为秒(Second)。Cookie中通过getMaxAge()方法与setMaxAge(int maxAge)方法来读写maxAge属性。

如果maxAge属性为正数,则表示该Cookie会在maxAge秒之后自动失效。浏览器会将maxAge为正数的Cookie持久化,即写到对应的Cookie文件中。无论客户关闭了浏览器还是电脑,只要还在maxAge秒之前,登录网站时该Cookie仍然有效。下面代码中的Cookie信息将永远有效。

 
  1. Cookie cookie = new Cookie("username""helloweenvsfei"); 
    // 新建Cookie  
  2. cookie.setMaxAge(Integer.MAX_VALUE);            // 
    设置生命周期为MAX_VALUE
     
  3. response.addCookie(cookie);                     // 
    输出到客户端
     

如果maxAge为负数,则表示该Cookie仅在本浏览器窗口以及本窗口打开的子窗口内有效,关闭窗口后该Cookie即失效。maxAge为负数的Cookie,为临时性Cookie,不会被持久化,不会被写到Cookie文件中。Cookie信息保存在浏览器内存中,因此关闭浏览器该Cookie就消失了。Cookie默认的maxAge值为-1。

如果maxAge为0,则表示删除该Cookie。Cookie机制没有提供删除Cookie的方法,因此通过设置该Cookie即时失效实现删除Cookie的效果。失效的Cookie会被浏览器从Cookie文件或者内存中删除,例如:

 
  1. Cookie cookie = new Cookie("username""helloweenvsfei");  
    // 新建Cookie  
  2. cookie.setMaxAge(0);                            // 
    设置生命周期为0,不能为负数
     
  3. response.addCookie(cookie);                     // 
    必须执行这一句
     

response对象提供的Cookie操作方法只有一个添加操作add(Cookie cookie)。要想修改Cookie只能使用一个同名的Cookie来覆盖原来的Cookie,达到修改的目的。删除时只需要把maxAge修改为0即可。

注意:从客户端读取Cookie时,包括maxAge在内的其他属性都是不可读的,也不会被提交。浏览器提交Cookie时只会提交name与value属性。maxAge属性只被浏览器用来判断Cookie是否过期。

 

转自:http://book.51cto.com/art/200912/169741.htm

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值