今天是pytorch学习打卡的第二天,加油!!
训练过程中打印训练时间
import os
import datetime
#打印时间
def printbar():
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n"+"=========="*8 + "%s"%nowtime)
1.准备数据
cifar2数据集为cifar10数据集的子集,只包括前两种类别airplane和automobile。
训练集有airplane和automobile图片各5000张,测试集有airplane和automobile图片各1000张。
cifar2任务的目标是训练一个模型来对飞机airplane和机动车automobile两种图片进行分类。
(需要数据集的点一下关注私聊我)
在Pytorch中构建图片数据管道通常有两种方法。
-
第一种是使用 torchvision中的datasets.ImageFolder来读取图片然后用 DataLoader来并行加载。
-
第二种是通过继承 torch.utils.data.Dataset 实现用户自定义读取逻辑然后用 DataLoader来并行加载。
第二种方法是读取用户自定义数据集的通用方法,既可以读取图片数据集,也可以读取文本数据集。
本篇我们介绍第一种方法。
import torch
from torch import nn
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms,datasets
transform_train = transforms.Compose(
[transforms.ToTensor()])
transform_valid = transforms.Compose(
[transforms.ToTensor()])
ds_train = datasets.ImageFolder("cifar2/train",
transform = transform_train,target_transform= lambda t:torch.tensor([t]).float())
ds_valid = datasets.ImageFolder("cifar2/test",
transform = transform_train,target_transform= lambda t:torch.tensor([t]).float())
print(ds_train.class_to_idx)
这里讲解一下ImageFolder
ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:
ImageFolder(root, transform=None, target_transform=None, loader=default_loader)
它主要有四个参数:
root:在root指定的路径下寻找图片
transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象
target_transform:对label的转换
loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象
label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。
dl_train = DataLoader(ds_train,batch_size = 50,shuffle = True,num_workers=3)
dl_valid = DataLoader(ds_valid,batch_size = 50,shuffle = True,num_workers=3)
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
#查看部分样本
from matplotlib import pyplot as plt
plt.figure(figsize=(8,8))
for i in range(9):
img,label = ds_train[i]
img = img.permute(1,2,0)
ax=plt.subplot(3,3,i+1)
ax.imshow(img.numpy())
ax.set_title("label = %d"%label.item())
ax.set_xticks([])
ax.set_yticks([])
plt.show()
2.定义模型
使用Pytorch通常有三种方式构建模型:
- 使用nn.Sequential按层顺序构建模型,
- 继承nn.Module基类构建自定义模型,
- 继承nn.Module基类构建模型并辅助应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)进行封装。
此处选择通过继承nn.Module基类构建自定义模型。
#测试AdaptiveMaxPool2d的效果
pool = nn.AdaptiveMaxPool2d((1,1))
t = torch.randn(10,8,32,32)
pool(t).shape
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2)
self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
self.dropout = nn.Dropout2d(p = 0.1)
self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(64,32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32,1)
self.sigmoid = nn.Sigmoid()
def forward(self,x):
x = self.conv1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.pool(x)
x = self.dropout(x)
x = self.adaptive_pool(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
y = self.sigmoid(x)
return y
net = Net()
print(net)
import torchkeras
torchkeras.summary(net,input_shape= (3,32,32))
3.训练模型
Pytorch通常需要用户编写自定义训练循环,训练循环的代码风格因人而异。
有3类典型的训练循环代码风格:
- 脚本形式训练循环
- 函数形式训练循环
- 类形式训练循环
此处介绍一种较通用的函数形式训练循环。
import pandas as pd
from sklearn.metrics import roc_auc_score
model = net
model.optimizer = torch.optim.SGD(model.parameters(),lr = 0.01)
model.loss_func = torch.nn.BCELoss()
model.metric_func = lambda y_pred,y_true: roc_auc_score(y_true.data.numpy(),y_pred.data.numpy())
model.metric_name = "auc"
def train_step(model,features,labels):
# 训练模式,dropout层发生作用
model.train()
# 梯度清零
model.optimizer.zero_grad()
# 正向传播求损失
predictions = model(features)
loss = model.loss_func(predictions,labels)
metric = model.metric_func(predictions,labels)
# 反向传播求梯度
loss.backward()
model.optimizer.step()
return loss.item(),metric.item()
def valid_step(model,features,labels):
# 预测模式,dropout层不发生作用
model.eval()
# 关闭梯度计算
with torch.no_grad():
predictions = model(features)
loss = model.loss_func(predictions,labels)
metric = model.metric_func(predictions,labels)
return loss.item(), metric.item()
# 测试train_step效果
features,labels = next(iter(dl_train))
train_step(model,features,labels)
开始模型训练
def train_model(model,epochs,dl_train,dl_valid,log_step_freq):
metric_name = model.metric_name
dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name])
print("Start Training...")
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("=========="*8 + "%s"%nowtime)
for epoch in range(1,epochs+1):
# 1,训练循环-------------------------------------------------
loss_sum = 0.0
metric_sum = 0.0
step = 1
for step, (features,labels) in enumerate(dl_train, 1):
loss,metric = train_step(model,features,labels)
# 打印batch级别日志
loss_sum += loss
metric_sum += metric
if step%log_step_freq == 0:
print(("[step = %d] loss: %.3f, "+metric_name+": %.3f") %
(step, loss_sum/step, metric_sum/step))
# 2,验证循环-------------------------------------------------
val_loss_sum = 0.0
val_metric_sum = 0.0
val_step = 1
for val_step, (features,labels) in enumerate(dl_valid, 1):
val_loss,val_metric = valid_step(model,features,labels)
val_loss_sum += val_loss
val_metric_sum += val_metric
# 3,记录日志-------------------------------------------------
info = (epoch, loss_sum/step, metric_sum/step,
val_loss_sum/val_step, val_metric_sum/val_step)
dfhistory.loc[epoch-1] = info
# 打印epoch级别日志
print(("\nEPOCH = %d, loss = %.3f,"+ metric_name + \
" = %.3f, val_loss = %.3f, "+"val_"+ metric_name+" = %.3f")
%info)
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n"+"=========="*8 + "%s"%nowtime)
print('Finished Training...')
return dfhistory
4.模型评估
模型的评估一般是评估在训练集和验证集上的效果, 在模型训练过程中, 我们都是保留着一个dfhistory的, 这个是一个DataFrame的结构, 里面是训练过程中训练集和验证集上模型的正确率和损失的变化, 我们可以通过可视化这个来看一下模型的训练情况。
dfhistory
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
def plot_metric(dfhistory, metric):
train_metrics = dfhistory[metric]
val_metrics = dfhistory['val_'+metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.plot(epochs, val_metrics, 'ro-')
plt.title('Training and validation '+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric, 'val_'+metric])
plt.show()
plot_metric(dfhistory,"loss")
plot_metric(dfhistory,"auc")
5.使用模型
def predict(model,dl):
model.eval()
with torch.no_grad():
result = torch.cat([model.forward(t[0]) for t in dl])
return(result.data)
#预测概率
y_pred_probs = predict(model,dl_valid)
y_pred_probs
#预测类别
y_pred = torch.where(y_pred_probs>0.5,
torch.ones_like(y_pred_probs),torch.zeros_like(y_pred_probs))
y_pred
6.保存模型
推荐使用保存参数方式保存Pytorch模型。
# 打印相关参数名称
print(model.state_dict().keys())
# 保存模型参数
torch.save(model.state_dict(), "./data/model_parameter.pkl")
net_clone = Net()
net_clone.load_state_dict(torch.load("./data/model_parameter.pkl"))
predict(net_clone,dl_valid)