python lambda表达式

本文介绍了Python中lambda表达式的使用方法,包括定义匿名函数、配合filter()筛选特定元素等应用场景,并对比了lambda与def的区别。

lambda只是一个表达式,函数体比def简单很多,很多时候定义def,然后写一个函数太麻烦,这时候就可以用lambda定义一个匿名函数。

lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。

lambda表达式是起到一个函数速写的作用。允许在代码内嵌入一个函数的定义。

1 list(filter(lambda x:True if x % 3 == 0 else False, range(100)))

如上所示,使用lambda表达式定义了一个匿名函数,用于筛选100以内的3的倍数,并生成一个列表。

 def make_repeat(n):
    return lambda s : s * n

当然lambda也可以嵌套在一个函数内使用,如上,函数中嵌套了一个lambda表达式。

double = make_repeat(2)
double
<function make_repeat.<locals>.<lambda> at 0x0000000003A01D90>

然后,要使用的时候可以用一个变量来接收,显示double变量,double变量是一个函数,并且需要一个参数,参见lambda表达式,需要一个s参数。

print(double(8))
16

最后,调用double变量,并且传入参数 8 ,得到返回值16。因为前面传入的n的值为 2 ,故 2 * 8 得到16。

内置BIF介绍:

filter():简单的理解为过滤器,需要两个参数,function,和一个序列(字符串、列表、元组都是序列),过滤器会依次将序列的值传入function中,

    如果返回True的话,将其重新生成一个列表返回。

1  list(filter(lambda x:True if x % 3 == 0 else False, range(100)))
2 [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99]

zip():字面意思理解,就是zip打包,可以将多个序列进行打包,它会将序列拆分,然后把第一个序列和第二个序列的元素依次组成元组,2个一组组合成列表。

    不过要注意的是,这是以最短序列来组合的,就是说如果一个序列比较长,一个比较短的话,组合只会进行到断序列的最后一个元素,多余的部分会被抛弃。

1 >>> str1 = "abcde"
2 >>> str2 = "abcdefg"
3 >>> list(zip(str1, str2))
4 [('a', 'a'), ('b', 'b'), ('c', 'c'), ('d', 'd'), ('e', 'e')]

map():映射,用法和filter()类似,也是将序列放入函数进行运算,但是,不论运算结果为什么,map()都将忠实反馈,这是map()和filter()的主要区别。请注意,filter()和map()中的function都必要有一个返回值。

按 Ctrl+C 复制代码

 

按 Ctrl+C 复制代码

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值