贝叶斯分类和实例

贝叶斯的分类:

(1) 朴素贝叶斯算法   设每个数据样本用一个n维特征向量来描述n个属性的值,即:X={x1x2xn},假定有m个类,分别用C1, C2,…Cm表示。给定一个未知的数据样本X(即没有类标号),若朴素贝叶斯分类法将未知的样本X分配给类Ci,则一定是   P(Ci|X)>P(Cj|X) 1≤j≤mj≠i   根据贝叶斯定理   由于P(X)对于所有类为常数,最大化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值