F - Wormholes(Bellmanford判负环)

本文介绍了一个有趣的虫洞时间旅行问题,并通过Bellman-Ford算法判断是否存在负权回路使得从起点出发能够回到比初始时间更早的时间点。通过具体的代码实现展示了如何处理这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ’s farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input
Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Lines 1.. F: For each farm, output “YES” if FJ can achieve his goal, otherwise output “NO” (do not include the quotes).
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES

题解:

Bellman-Ford判负环。
很好玩的虫洞问题。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

const int INF = 0x3f3f3f3f;
const int maxn = 550;
int dist[maxn];

struct Edge
{
    int u;
    int v;
    int cost;
    Edge(int _u,int _v,int _cost):u(_u),v(_v),cost(_cost){}
};

vector<Edge> E;

bool BellmanFord(int start,int n)
{
   memset(dist,0x3f,sizeof(dist));
   dist[start]=0;

   for(int i=1;i<n;i++)
   {
       bool flag = false;
       for(int j=0;j<E.size();j++)
       {
           int u = E[j].u;
           int v = E[j].v;
           int cost = E[j].cost;
           if(dist[v]>dist[u]+cost)
           {
               dist[v] = dist[u]+cost;
               flag = true;
           }
       }
       if(!flag) return true;
   }

   for(int j=0;j<E.size();j++)
   {
       if(dist[E[j].v]>dist[E[j].u]+E[j].cost)
       {
           return false;
       }
   }
   return true;
}

int main()
{
    int T;
    scanf("%d",&T);
    int N,M,W;
    while(T--)
    {
       scanf("%d%d%d",&N,&M,&W);

       int u,v,t;

       for(int i=1;i<=M;i++)
       {
        scanf("%d%d%d",&u,&v,&t);
        E.push_back(Edge(u,v,t));
        E.push_back(Edge(v,u,t));
       }

       for(int i=1;i<=W;i++)
       {
           scanf("%d%d%d",&u,&v,&t);
           E.push_back(Edge(u,v,-t));
       }

       bool flag = BellmanFord(1,N);
       if(flag) cout<<"NO"<<endl;
       else cout<<"YES"<<endl;
          E.clear();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值