数据暴增的年代,数据科学家、分析师在被要求对数据有更深的理解与分析的同时,还需要将结果有效地传递给他人。如何让目标听众更直观地理解?当然是将数据可视化啊,而且最好是动态可视化。
本文将以线型图、条形图和饼图为例,系统地讲解如何让你的数据图表动起来。

这些动态图表是用什么做的?
接触过数据可视化的同学应该对 Python 里的 Matplotlib 库并不陌生。它是一个基于 Python 的开源数据绘图包,仅需几行代码就可以帮助开发者生成直方图、功率谱、条形图、散点图等。这个库里有个非常实用的扩展包——FuncAnimation,可以让我们的静态图表动起来。
FuncAnimation 是 Matplotlib 库中 Animation 类的一部分,后续会展示多个示例。如果是首次接触,你可以将这个函数简单地理解为一个 While 循环,不停地在 “画布” 上重新绘制目标数据图。
如何使用 FuncAnimation?
这个过程始于以下两行代码:
import matplotlib.animation as ani animator = ani.FuncAnimation(fig, chartfunc, interval = 100) 复制代码
从中我们可以看到 FuncAnimation 的几个输入:
- fig 是用来 「绘制图表」的 figure 对象;
- chartfunc 是一个以数字为输入的函数,其含义为时间序列上的时间;
- interval 这个更好理解,是帧之间的间隔延迟,以毫秒为单位,默认值为 200。
这是三个关键输入,当然还有更多可选输入,感兴趣的读者可查看原文档,这里不再赘述。
下一步要做的就是将数据图表参数化,从而转换为一个

本文介绍了如何使用Python的Matplotlib库中的FuncAnimation将静态图表转化为动态图表,包括动态线型图、条形图和饼图的绘制方法。FuncAnimation可以理解为一个While循环,不断在画布上重绘图表。文章提供了实例代码,展示了如何处理数据并应用FuncAnimation让图表动起来。
最低0.47元/天 解锁文章
1042

被折叠的 条评论
为什么被折叠?



