知识图谱(Knowledge Graph, KG)长期以来一直作为结构化知识表示与推理的核心基础设施。随着大型语言模型(Large Language Models, LLMs)的兴起,知识图谱的构建进入了一个全新的范式——从基于规则与统计的方法论管线,转向以语言驱动和生成式框架为核心的模式。本文综述了LLM赋能的知识图谱构建的最新进展,系统分析了LLM如何重塑传统的三层构建流程:本体工程、知识抽取与知识融合。
我们首先回顾了传统知识图谱的方法体系,以奠定概念基础;随后从两个互补的视角系统梳理了新兴的LLM驱动方法:基于模式(schema-based)范式,强调结构化、规范化与一致性;以及无模式(schema-free)范式,突出灵活性、适应性与开放式发现。在每个阶段中,我们汇总了具有代表性的框架,剖析其技术机制,并指出存在的局限性。
最后,本文总结了关键趋势与未来研究方向,包括:面向LLM的基于知识图谱的推理、面向智能体系统的动态知识记忆,以及多模态知识图谱构建。通过这项系统性综述,我们旨在阐明LLM与知识图谱之间不断演化的交互关系,推动符号知识工程与神经语义理解的融合,迈向自适应、可解释且智能的知识系统发展。
1 引言
知识图谱(Knowledge Graph, KG)长期以来一直是结构化知识表示、集成与推理的基石。它为语义搜索、问答系统以及科学发现等广泛的智能应用提供了统一的语义基础。传统的知识图谱构建流程通常由三个主要组成部分构成:本体工程(ontology engineering)、知识抽取(knowledge extraction)和知识融合(knowledge fusion)。尽管这些方法在支持大规模知识组织方面取得了显著成功,但传统范式(如 Zhong 等,2023;Zhao 等,2024)仍然面临三大长期性挑战:
(1) 可扩展性与数据稀疏性问题:基于规则或监督学习的系统往往难以跨领域泛化;
(2) 专家依赖与刚性问题:模式与本体的设计严重依赖人工干预,缺乏自适应性;
(3) 流程割裂与误差累积问题:构建各阶段的割裂处理容易导致误差逐步传递。
这些限制阻碍了自演化(self-evolving)、大规模与动态知识图谱的发展。
大型语言模型(Large Language Models, LLMs)的出现,为突破上述瓶颈带来了范式级变革。通过大规模预训练与涌现的泛化能力,LLMs 引入了三种关键机制:
(1) 生成式知识建模(Generative Knowledge Modeling) —— 直接从非结构化文本中合成结构化表示;
(2) 语义统一(Semantic Unification) —— 通过自然语言对齐整合异构知识源;
(3) 指令驱动的协同(Instruction-driven Orchestration) —— 以提示(prompt)为基础协调复杂的知识图谱构建流程。
因此,LLMs 正在从传统的文本处理工具演化为能够无缝连接自然语言与结构化知识的认知引擎(cognitive engines)(如 Zhu 等,2024b;Zhang & Soh,2024)。这一演化标志着知识图谱构建从规则驱动、流程化体系向LLM驱动的统一与自适应框架的根本转变。在这一新范式下,知识获取、组织与推理被视为在生成式与自精化(self-refining)生态系统中相互依存的过程(Pan 等,2024)。
鉴于该领域的迅速发展,本文对LLM驱动的知识图谱构建进行了全面综述。我们系统回顾了涵盖本体工程、知识抽取与知识融合的最新研究成果,分析了新兴方法论范式,并总结了LLM与知识表示交叉领域的开放挑战与未来方向。
本文结构如下:
-
第2节 介绍传统知识图谱构建的基础,包括LLM出现前的本体工程、知识抽取与知识融合技术;
-
第3节 回顾LLM增强的本体构建方法,涵盖自上而下范式(LLM作为本体助手)与自下而上范式(KG服务于LLM);
-
第4节 介绍LLM驱动的知识抽取,对比基于模式与无模式的方法论;
-
第5节 讨论LLM赋能的知识融合,重点分析模式层、实例层及混合型框架;
-
第6节 探讨未来研究方向,包括基于知识图谱的推理、智能体系统中的动态知识记忆,以及多模态知识图谱构建。

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?
别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享!
👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势
想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI:
1. 100+本大模型方向电子书

2. 26 份行业研究报告:覆盖多领域实践与趋势
报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

- 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
- 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
- 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
- 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战
PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

- 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
- 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
- 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
- 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。
二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走
想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位
面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析:

2. 102 道 AI 大模型真题:直击大模型核心考点
针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题
专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:

三、路线必明:AI 大模型学习路线图,1 张图理清核心内容
刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。


四、资料领取:全套内容免费抱走,学 AI 不用再找第二份
不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:
👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!
10万+

被折叠的 条评论
为什么被折叠?



