python实现各种常见的算法

单链表

单链表和数组的比较

数组静态分配内存,链表动态分配内存;数组在内存中连续,链表不连续;数组利用下标定位,时间复杂度为O(1),链表定位元素时间复杂度O(n);数组插入或删除元素的时间复杂度O(n),链表的时间复杂度O(1)。
根据以上分析可得出数组和链表的优缺点如下:

  • 数组的优点

    • 随机访问性强(通过下标进行快速定位)
    • 查找速度快
  • 数组的缺点

    • 插入和删除效率低(插入和删除需要移动数据)
    • 可能浪费内存(因为是连续的,所以每次申请数组之前必须规定数组的大小,如果大小不合理,则可能会浪费内存)
    • 内存空间要求高,必须有足够的连续内存空间。
    • 数组大小固定,不能动态拓展
  • 链表的优点

    • 插入删除速度快(因为有next指针指向其下一个节点,通过改变指针的指向可以方便的增加删除元素)
      -内存利用率高,不会浪费内存(可以使用内存中细小的不连续空间(大于node节点的大小),并且在需要空间的时候才创建空间)
      -大小没有固定,拓展很灵活。
  • 链表的缺点

    • 不能随机查找,必须从第一个开始遍历,查找效率低

代码实现单链表


class Node:  
    def __init__(self, data):
        self.data = data  
        self.next = None  
class Linked_List:
    def __init__(self):
        self.head = None
    def initlist(self,data_list):    #链表初始化函数
        self.head=Node(data_list[0])   #创建头结点
        temp=self.head
        for i in data_list[1:]: #逐个为 data 内的数据创建结点, 建立链表
            node=Node(i)
            temp.next=node
            temp=temp.next
    def is_empty(self):  #判断链表是否为空
        if self.head.next==None:
            print("Linked_list is empty")
            return True
        else:
            return False
    def get_length(self):  #获取链表的长度
        temp=self.head #临时变量指向队列头部
        length=0 #计算链表的长度变量
        while temp!=None:
            length=length+1
            temp=temp.next
        return length #返回链表的长度
    def insert(self,key,value): #链表插入数据函数
        if key<0 or key>self.get_length()-1:
            print("insert error")
        temp=self.head
        i=0
        while i<=key: #遍历找到索引值为 key 的结点后, 在其后面插入结点
            pre=temp
            temp=temp.next
            i=i+1
        node=Node(value)
        pre.next=node
        node.next=temp
    def print_list(self):   #遍历链表,并将元素依次打印出来
        print("linked_list:")
        temp=self.head
        new_list=[]
        while temp is not None:
            new_list.append(temp.data)
            temp=temp.next
        print(new_list)
    def remove(self,key):  #链表删除数据函数
        if key<0 or key>self.get_length()-1:
            print("insert error")
        i=0
        temp=self.head
        while temp !=None:  #遍历找到索引值为 key 的结点
            pre=temp
            temp=temp.next
            i=i+1
            if i==key:
                pre.next=temp.next
                temp=None
                return True
        pre.next=None
    def reverse(self): #将链表反转
        prev = None
        current = self.head
        while current:
            next_node = current.next
            current.next = prev
            prev = current
            current = next_node
        self.head = prev

在这里插入图片描述

双向链表

  • 单链表只有一个指向下一结点的指针,也就是只能next

  • 双链表除了有一个指向下一结点的指针外,还有一个指向前一结点的指针,可以通过prev()快速找到前一结点,顾名思义,单链表只能单向读取
    在这里插入图片描述
    在这里插入图片描述

  • 从以上结构可以得出双链表具有以下优点:

    • 1、删除单链表中的某个结点时,一定要得到待删除结点的前驱,得到该前驱有两种方法,第一种方法是在定位待删除结点的同时一路保存当前结点的前驱。第二种方法是在定位到待删除结点之后,重新从单链表表头开始来定位前驱。尽管通常会采用方法一。但其实这两种方法的效率是一样的,指针的总的移动操作都会有2*i次。而如果用双向链表,则不需要定位前驱结点。因此指针总的移动操作为i次。

    • 2、查找时也一样,我们可以借用二分法的思路,从head(首节点)向后查找操作和last(尾节点)向前查找操作同步进行,这样双链表的效率可以提高一倍。

  • 可是为什么市场上单链表的使用多余双链表呢?

    • 从存储结构来看,每个双链表的节点要比单链表的节点多一个指针,而长度为n就需要 n*length(这个指针的length在32位系统中是4字节,在64位系统中是8个字节) 的空间,这在一些追求时间效率不高应用下并不适应,因为它占用空间大于单链表所占用的空间;这时设计者就会采用以时间换空间的做法,这时一种工程总体上的衡量。

代码实现双向链表


class Node(object):
    # 双向链表节点
    def __init__(self, item):
        self.item = item
        self.next = None
        self.prev = None
class DLinkList(object):
    # 双向链表
    def __init__(self):
        self._head = None
    def is_empty(self):
        # 判断链表是否为空
        return self._head == None
    def get_length(self):
        # 返回链表的长度
        cur = self._head
        count = 0
        while cur != None:
            count=count+1
            cur = cur.next
        return count
    def travel(self):
        # 遍历链表
        cur = self._head
        while cur != None:
            print(cur.item)
            cur = cur.next
        print("")
    def add(self, item):
        # 头部插入元素
        node = Node(item)
        if self.is_empty():
            # 如果是空链表,将_head指向node
            self._head = node
        else:
            # 将node的next指向_head的头节点
            node.next = self._head
            # 将_head的头节点的prev指向node
            self._head.prev = node
            # 将_head 指向node
            self._head = node
    def append(self, item):
        # 尾部插入元素
        node = Node(item)
        if self.is_empty():
            # 如果是空链表,将_head指向node
            self._head = node
        else:
            # 移动到链表尾部
            cur = self._head
            while cur.next != None:
                cur = cur.next
            # 将尾节点cur的next指向node
            cur.next = node
            # 将node的prev指向cur
            node.prev = cur
    def search(self, item):
        # 查找元素是否存在
        cur = self._head
        while cur != None:
            if cur.item == item:
                return True
            cur = cur.next
        return False
    def insert(self, pos, item):
        # 在指定位置添加节点
        if pos <= 0:
            self.add(item)
        elif pos > (self.length()-1):
            self.append(item)
        else:
            node = Node(item)
            cur = self._head
            count = 0
            # 移动到指定位置的前一个位置
            while count < (pos-1):
                count += 1
                cur = cur.next
            # 将node的prev指向cur
            node.prev = cur
            # 将node的next指向cur的下一个节点
            node.next = cur.next
            # 将cur的下一个节点的prev指向node
            cur.next.prev = node
            # 将cur的next指向node
            cur.next = node
    def remove(self, item):
        # 删除元素
        if self.is_empty():
            return
        else:
            cur = self._head
            if cur.item == item:
                # 如果首节点的元素即是要删除的元素
                if cur.next == None:
                    # 如果链表只有这一个节点
                    self._head = None
                else:
                    # 将第二个节点的prev设置为None
                    cur.next.prev = None
                    # 将_head指向第二个节点
                    self._head = cur.next
                return
            while cur != None:
                if cur.item == item:
                    # 将cur的前一个节点的next指向cur的后一个节点
                    cur.prev.next = cur.next
                    # 将cur的后一个节点的prev指向cur的前一个节点
                    cur.next.prev = cur.prev
                    break
                cur = cur.next

队列(链表形式实现)


class Node(object):
    def __init__(self,elem,next=None):
        self.elem = elem #表示对应的元素值
        self.next=next #表示下一个链接的链点
class Queue(object):
    def __init__(self):
        self.head = None #头部链点为 None
        self.rear = None #尾部链点为 None
    def is_empty(self):
        return self.head is None #判断队列是否为空
    def enqueue(self, elem):
        p = Node(elem) #初始化一个新的点
        if self.is_empty():
            self.head = p #队列头部为新的链点
            self.rear = p #队列尾部为新的链点
        else:
            self.rear.next = p #队列尾部的后继是这个新的点
            self.rear =p #然后让队列尾部指针指向这个新的点
    def dequeue(self):
        if self.is_empty(): #判断队列是否为空
            print('Queue_is_empty') #若队列为空,则退出 dequeue 操作
        else:
            result = self.head.elem #result为队列头部元素
            self.head = self.head.next #改变队列头部指针位置
            return result #返回队列头部元素
    def peek(self):
        if self.is_empty(): #判断队列是否为空
            print('NOT_FOUND') #为空则返回 NOT_FOUND
        else:
            return self.head.elem #返回队列头部元素
    def print_queue(self):
        print("queue:")
        temp=self.head
        myqueue=[] #暂时存放队列数据
        while temp is not None:
            myqueue.append(temp.elem)
            temp=temp.next
        print(myqueue)

队列(数组实现)

class Queue():
    def __init__(self):
        self.entries = [] #表示队列内的参数
        self.length = 0 #表示队列的长度
        self.front=0 #表示队列头部位置
    def enqueue(self, item):
        self.entries.append(item) #添加元素到队列里面
        self.length = self.length + 1 #队列长度增加 1
    def dequeue(self):
        self.length = self.length - 1 #队列的长度减少 1
        dequeued = self.entries[self.front] #队首元素为dequeued
        self.front-=1 #队首的位置减少1
        self.entries = self.entries[self.front:] #队列的元素更新为退队之后的队列
        return dequeued
    def peek(self):
        return self.entries[0] #直接返回队列的队首元素



二叉树

关于二叉树的透彻理解

class Node(object):
    def __init__(self,item):
        self.item=item #表示对应的元素
        self.left=None #表示左节点
        self.right=None #表示右节点
    def __str__(self):
        return str(self.item)  #print 一个 Node 类时会打印 __str__ 的返回值
class Tree(object):
    def __init__(self):
        self.root=Node('root')  #根节点定义为 root 永不删除,作为哨兵使用。
    def add(self,item):
        node = Node(item)
        if self.root is None:  #如果二叉树为空,那么生成的二叉树最终为新插入树的点
            self.root = node
        else:
            q = [self.root] # 将q列表,添加二叉树的根节点
            while True:
                pop_node = q.pop(0)
                if pop_node.left is None: #左子树为空则将点添加到左子树
                    pop_node.left = node
                    return
                elif pop_node.right is None: #右子树为空则将点添加到右子树
                    pop_node.right = node
                    return
                else:
                    q.append(pop_node.left)
                    q.append(pop_node.right)
    def get_parent(self, item):
        if self.root.item == item:
            return None  # 根节点没有父节点
        tmp = [self.root] # 将tmp列表,添加二叉树的根节点
        while tmp:
            pop_node = tmp.pop(0)
            if pop_node.left and pop_node.left.item == item: #某点的左子树为寻找的点
                return pop_node #返回某点,即为寻找点的父节点
            if pop_node.right and pop_node.right.item == item: #某点的右子树为寻找的点
                return pop_node #返回某点,即为寻找点的父节点
            if pop_node.left is not None: #添加tmp 元素
                tmp.append(pop_node.left)
            if pop_node.right is not None:
                tmp.append(pop_node.right)
        return None
    def delete(self, item):
        if self.root is None:  # 如果根为空,就什么也不做
            return False

        parent = self.get_parent(item)
        if parent:
            del_node = parent.left if parent.left.item == item else parent.right  # 待删除节点
            if del_node.left is None:
                if parent.left.item == item:
                    parent.left = del_node.right
                else:
                    parent.right = del_node.right
                del del_node
                return True
            elif del_node.right is None:
                if parent.left.item == item:
                    parent.left = del_node.left
                else:
                    parent.right = del_node.left
                del del_node
                return True
            else:  # 左右子树都不为空
                tmp_pre = del_node
                tmp_next = del_node.right
                if tmp_next.left is None:
                    # 替代
                    tmp_pre.right = tmp_next.right
                    tmp_next.left = del_node.left
                    tmp_next.right = del_node.right

                else:
                    while tmp_next.left:  # 让tmp指向右子树的最后一个叶子
                        tmp_pre = tmp_next
                        tmp_next = tmp_next.left
                    # 替代
                    tmp_pre.left = tmp_next.right
                    tmp_next.left = del_node.left
                    tmp_next.right = del_node.right
                if parent.left.item == item:
                    parent.left = tmp_next
                else:
                    parent.right = tmp_next
                del del_node
                return True
        else:
            return False

字典树

字典树的深度理解

  • Trie树的基本性质可以归纳为:
    1. 根节点不包含字符,除根节点以外每个节点只包含一个字符。
    2. 从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。
    3. 每个节点的所有子节点包含的字符串不相同。
  • Trie树有一些特性:
    1. 根节点不包含字符,除根节点外每一个节点都只包含一个字符。
    2. 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。
    3. 每个节点的所有子节点包含的字符都不相同
    4. 如果字符的种数为n,则每个结点的出度为n,这也是空间换时间的体现,浪费了很多的空间
    5. 插入查找的复杂度为O(n),n为字符串长度。

class TrieNode:
    def __init__(self):
        self.nodes = dict()  # 构建字典
        self.is_leaf = False
    def insert(self, word: str):  
        curr = self
        for char in word:
            if char not in curr.nodes:
                curr.nodes[char] = TrieNode()
            curr = curr.nodes[char]
        curr.is_leaf = True
    def insert_many(self, words: [str]):
        for word in words:
            self.insert(word)
    def search(self, word: str):
        curr = self
        for char in word:
            if char not in curr.nodes:
                return False
            curr = curr.nodes[char]
        return curr.is_leaf


class Stack(object):
    def __init__(self, limit=10):
        self.stack = [] #存放元素
        self.limit = limit #栈容量极限
    def push(self, data): #判断栈是否溢出
        if len(self.stack) >= self.limit:
            print('StackOverflowError')
            pass
        self.stack.append(data)
    def pop(self):
        if self.stack:
            return self.stack.pop()
        else:
            raise IndexError('pop from an empty stack') #空栈不能被弹出
    def peek(self): #查看堆栈的最上面的元素
        if self.stack:
            return self.stack[-1]
    def is_empty(self): #判断栈是否为空
        return not bool(self.stack)
    def size(self): #返回栈的大小
        return len(self.stack)



class heap(object):
    def __init__(self):
        #初始化一个空堆,使用数组来在存放堆元素,节省存储
        self.data_list = []
    def get_parent_index(self,index):
        #返回父节点的下标
        if index == 0 or index > len(self.data_list) -1:
            return None
        else:
            return (index -1) >> 1
    def swap(self,index_a,index_b):
        #交换数组中的两个元素
        self.data_list[index_a],self.data_list[index_b] = self.data_list[index_b],self.data_list[index_a]
    def insert(self,data):
        #先把元素放在最后,然后从后往前依次堆化
        #这里以大顶堆为例,如果插入元素比父节点大,则交换,直到最后
        self.data_list.append(data)
        index = len(self.data_list) -1 
        parent = self.get_parent_index(index)
        #循环,直到该元素成为堆顶,或小于父节点(对于大顶堆) 
        while parent is not None and self.data_list[parent] < self.data_list[index]:
            #交换操作
            self.swap(parent,index)
            index = parent
            parent = self.get_parent_index(parent)
    def removeMax(self):
        #删除堆顶元素,然后将最后一个元素放在堆顶,再从上往下依次堆化
        remove_data = self.data_list[0]
        self.data_list[0] = self.data_list[-1]
        del self.data_list[-1]

        #堆化
        self.heapify(0)
        return remove_data
    def heapify(self,index):
        #从上往下堆化,从index 开始堆化操作 (大顶堆)
        total_index = len(self.data_list) -1
        while True:
            maxvalue_index = index
            if 2*index +1 <=  total_index and self.data_list[2*index +1] > self.data_list[maxvalue_index]:
                maxvalue_index = 2*index +1
            if 2*index +2 <=  total_index and self.data_list[2*index +2] > self.data_list[maxvalue_index]:
                maxvalue_index = 2*index +2
            if maxvalue_index == index:
                break
            self.swap(index,maxvalue_index)
            index = maxvalue_index

算法实现排序

我们通常所说的排序算法往往指的是内部排序算法,即数据记录在内存中进行排序。
排序算法大体可分为两种:
  一种是比较排序,时间复杂度O(nlogn) ~ O(n^2),主要有:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等。
  另一种是非比较排序,时间复杂度可以达到O(n),主要有:计数排序,基数排序,桶排序等。
 这里我们来探讨一下常用的比较排序算法,下表给出了常见比较排序算法的性能:
  
  在这里插入图片描述

排序算法的稳定性

排序算法稳定性的简单形式化定义为:如果Ai = Aj排序前Ai在Aj之前排序后Ai还在Aj之前,则称这种排序算法是稳定的。通俗地讲就是保证排序前后两个相等的数的相对顺序不变。
  对于不稳定的排序算法,只要举出一个实例,即可说明它的不稳定性;而对于稳定的排序算法,必须对算法进行分析从而得到稳定的特性。需要注意的是,排序算法是否为稳定的是由具体算法决定的,不稳定的算法在某种条件下可以变为稳定的算法,而稳定的算法在某种条件下也可以变为不稳定的算法。
  例如,对于冒泡排序,原本是稳定的排序算法,如果将记录交换的条件改成A[i] >= A[i + 1],则两个相等的记录就会交换位置,从而变成不稳定的排序算法。
  其次,说一下排序算法稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,前一个键排序的结果可以为后一个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位排序后元素的顺序在高位也相同时是不会改变的

冒泡排序

冒泡排序是一种极其简单的排序算法,也是我所学的第一个排序算法。它重复地走访过要排序的元素,依次比较相邻两个元素,如果他们的顺序错误就把他们调换过来,直到没有元素再需要交换,排序完成。这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢“浮”到数列的顶端。
  冒泡排序算法的运作如下:
比较相邻的元素,如果前一个比后一个大,就把它们两个调换位置。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
  由于它的简洁,冒泡排序通常被用来对于程序设计入门的学生介绍算法的概念。冒泡排序的代码如下:

def bubble_sort(old_list):
    n=len(old_list)
    for i in range(n-1):
        for j in range(n-1-i):
            if old_list[j]>old_list[j+1]:
                old_list[j],old_list[j+1]=old_list[j+1],old_list[j]
    return old_list

尽管冒泡排序是最容易了解和实现的排序算法之一,但它对于少数元素之外的数列排序是很没有效率的。

鸡尾酒排序

鸡尾酒排序,也叫定向冒泡排序,是冒泡排序的一种改进。此算法与冒泡排序的不同处在于从低到高然后从高到低,而冒泡排序则仅从低到高去比较序列里的每个元素。他可以得到比冒泡排序稍微好一点的效能。

插入排序

插入排序是一种简单直观的排序算法。它的工作原理非常类似于我们抓扑克牌
对于未排序数据(右手抓到的牌),在已排序序列(左手已经排好序的手牌)中从后向前扫描,找到相应位置并插入。

插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
  具体算法描述如下:

  1. 从第一个元素开始,该元素可以认为已经被排序
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
  5. 将新元素插入到该位置后
  6. 重复步骤2~5

def insertion_sort(old_list):
    n=len(old_list)
    k=0
    for i in range(1,n):
        temp=old_list[i]
        j=i
        while j>0 and temp<old_list[j-1]:
            old_list[j]=old_list[j-1]
            j=j-1
        old_list[j]=temp
    return old_list

插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,比如量级小于千,那么插入排序还是一个不错的选择。 插入排序在工业级库中也有着广泛的应用,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序(通常为8个或以下)。

快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个元素要O(nlogn)次比较。在最坏状况下则需要O(n^2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他O(nlogn)算法更快,因为它的内部循环可以在大部分的架构上很有效率地被实现出来。
  快速排序使用分治策略(Divide and Conquer)来把一个序列分为两个子序列。步骤为:

  1. 从序列中挑出一个元素,作为"基准"(pivot).
  2. 把所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准的后面(相同的数可以到任一边),这个称为分区(partition)操作。
  3. 对每个分区递归地进行步骤1~2,递归的结束条件是序列的大小是0或1,这时整体已经被排好序了。

def quick_sort(list,low,high):
    i=low
    j=high    
    if i >= j:
        return list
    key=list[i]
    while i < j:
        while i < j and list[j]>=key:
            j = j - 1
        list[i]=list[j]
        while i < j and list[i]<=key:
            i = i + 1
        list[j]=list[i]
    list[i]=key
    quick_sort(list,low,i-1)
    quick_sort(list,j+1,high)
    return list

使用快速排序法对一列数字进行排序的过程:
在这里插入图片描述
 快速排序是不稳定的排序算法,不稳定发生在基准元素与A[tail+1]交换的时刻。

比如序列:{ 1, 3, 4, 2, 8, 9, 8, 7, 5 },基准元素是5,一次划分操作后5要和第一个8进行交换,从而改变了两个元素8的相对次序。

选择排序

选择排序也是一种简单直观的排序算法。它的工作原理很容易理解:初始时在序列中找到最小(大)元素,放到序列的起始位置作为已排序序列;然后,再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
  注意选择排序与冒泡排序的区别:冒泡排序通过依次交换相邻两个顺序不合法的元素位置,从而将当前最小(大)元素放到合适的位置;而选择排序每遍历一次都记住了当前最小(大)元素的位置,最后仅需一次交换操作即可将其放到合适的位置。
选择排序是不稳定的排序算法,不稳定发生在最小元素与A[i]交换的时刻。
  比如序列:{ 5, 8, 5, 2, 9 },一次选择的最小元素是2,然后把2和第一个5进行交换,从而改变了两个元素5的相对次序。


def select_sort(list):
    length=len(list)
    for i in range(length):
        min_index=i
        for j in range(i,length):
            if list[j]<list[min_index]:
                min_index=j
        list[i],list[min_index]=list[min_index],list[i]
    return list

归并排序

归并排序是创建在归并操作上的一种有效的排序算法,效率为O(nlogn),1945年由冯·诺伊曼首次提出。

归并排序的实现分为递归实现与非递归(迭代)实现。递归实现的归并排序是算法设计中分治策略的典型应用,我们将一个大问题分割成小问题分别解决,然后用所有小问题的答案来解决整个大问题。非递归(迭代)实现的归并排序首先进行是两两归并,然后四四归并,然后是八八归并,一直下去直到归并了整个数组。

归并排序算法主要依赖归并(Merge)操作。归并操作指的是将两个已经排序的序列合并成一个序列的操作,归并操作步骤如下:

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针到达序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾
def merge_sort(list):
    if len(list)<=1:
        return list
    mid=int(len(list)/2)
    left=merge_sort(list[:mid])
    right=merge_sort(list[mid:])
    return merge(left,right)
    

def merge(list1,list2):
    list=[]
    i,j=0,0
    while i<len(list1) and j<len(list2):
        if list1[i]<list2[j]:
            list.append(list1[i])
            i=i+1
        elif list1[i]>=list2[j]:
            list.append(list2[j])
            j=j+1
    list.extend(list1[i:])
    list.extend(list2[j:])
    return list

希尔排序

希尔排序,也叫递减增量排序,是插入排序的一种更高效的改进版本。希尔排序是不稳定的排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位
      希尔排序通过将比较的全部元素分为几个区域来提升插入排序的性能。这样可以让一个元素可以一次性地朝最终位置前进一大步。然后算法再取越来越小的步长进行排序,算法的最后一步就是普通的插入排序,但是到了这步,需排序的数据几乎是已排好的了(此时插入排序较快)。
      假设有一个很小的数据在一个已按升序排好序的数组的末端。如果用复杂度为O(n^2)的排序(冒泡排序或直接插入排序),可能会进行n次的比较和交换才能将该数据移至正确位置。而希尔排序会用较大的步长移动数据,所以小数据只需进行少数比较和交换即可到正确位置。
       希尔排序是不稳定的排序算法,虽然一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱。

比如序列:{ 3, 5, 10, 8, 7, 2, 8, 1, 20, 6 },h=2时分成两个子序列 { 3, 10, 7, 8, 20 } 和 { 5, 8, 2, 1, 6 } ,未排序之前第二个子序列中的8在前面,现在对两个子序列进行插入排序,得到 { 3, 7, 8, 10, 20 } 和 { 1, 2, 5, 6, 8 } ,即 { 3, 1, 7, 2, 8, 5, 10, 6, 20, 8 } ,两个8的相对次序发生了改变。


def shell_sort(nums):
    step = len(nums)/2
    while step > 0:
        for i in range(step, len(nums)):
            while i >= step and nums[i-step] > nums[i]:
                nums[i], nums[i-step] = nums[i-step], nums[i]
                i -= step
        step = step/2
    return nums

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值