这道题就是找规律,注意当k是奇数时,ans = m*m,而不是ans = m的(k+1)/2次方,不信你可以在草稿本上画一下,比如 7 2 5 ,答案是4不是8。
其他规律看代码,还要注意不能用pow函数,会有精度问题。注意用cin ,cout ,代替scanf,printf.
废话少说,看AC代码,另外附上python代码(python不用考虑精度问题还有溢出)
AC code:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#define INF 1e5
#define mod 1000000007
using namespace std;
const int maxn = 1000 + 10;
int n = 0,m = 0,k = 0;
typedef long long ULL;
int main(){
ULL ans = 1;
//scanf("%d %d %d",&n,&m,&k);
cin >> n >> m >> k;
if(k == 1 || k > n){
for(int i = 1;i <= n;++i){
ans = ans * m % mod;
}
//ans = ULL(pow(m,n) )% mod;
}else if(k == n){
//ans = ULL(pow(m,(n+1)/2) )% mod;
for(int i = 1;i <= (n+1)/2;++i){
ans = ans * m % mod;
}
}else if(k % 2 == 0 && k != n && k != 1 && k < n){
ans = m;
}else if(k %2 == 1 && k != n && k != 1 && k < n){
ans = m * m % mod;
}
//printf("%I64d\n",ans);
cout << ans << endl;
return 0;
}
python code:
n, m, k = map(int, raw_input().split(' '))
r = 0
if k>n or k == 1:
r = m**n
elif k == n:
r = m**((n+1)/2)
elif k%2 == 0:
r = m
else: r = m*m
print r%(10**9+7)