python9snake
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
31、基于二次型的多元签名方案解析
本文提出了一种基于二次型的多元签名方案,通过非满射的中心映射设计,有效抵御了针对Rainbow方案的多种攻击。方案在签名生成效率上显著优于传统方法,尤其在参数r较大时表现更优,且私钥较短。然而,公钥长度较长,且需防范MinRank攻击和多项式同构问题,因此对基域阶数有较高要求。文章详细分析了方案的密钥生成、签名与验证流程、安全性及性能,并给出了实际应用建议与未来优化方向,为多元公钥密码系统提供了新的研究思路。原创 2025-10-20 07:28:02 · 21 阅读 · 0 评论 -
30、多元加密与签名方案的创新与分析
本文探讨了两种多元公钥密码系统(MPKC)中的创新方案:ABC加密方案和基于二次型的多元签名方案。ABC方案在解密效率上显著优于HFE方案,且对MinRank攻击具有免疫性,但尚缺乏可证明的安全性;基于二次型的签名方案利用非退化二次型的等价类构建,签名生成效率比Rainbow高8-9倍,并因使用两个互斥非满射多项式系统而具备更强的抗特定攻击能力。文章分析了两种方案的核心思想、安全性和效率优势,并讨论了其实际应用场景及未来研究方向,为后量子密码学的发展提供了新思路。原创 2025-10-19 09:12:25 · 16 阅读 · 0 评论 -
29、简单矩阵加密方案:ABC 加密系统解析
本文详细解析了一种基于简单矩阵运算的多元公钥加密方案——ABC加密系统。该方案通过构造矩阵乘法作为中心映射,结合可逆线性变换实现加解密,并分析了其在面对高阶线性化方程攻击、MinRank攻击、代数攻击等主要威胁时的安全性。文章介绍了ABC系统的构建原理、密钥结构、加解密流程及安全性评估,实验表明其在合理参数下具有高于2^86的安全级别和可控的密钥大小。同时,与已被破解的HFE方案对比,ABC展现出更强的安全性和良好的解密效率潜力。最后,文章展望了参数优化、新攻击防御和在云计算、物联网等领域的应用拓展方向。原创 2025-10-18 14:35:43 · 18 阅读 · 0 评论 -
28、密码系统中的多项式除法与攻击策略分析
本文深入分析了密码系统中的多项式除法算法及其在基于控制流漏洞的定时攻击中的应用,揭示了秘密密钥面临的潜在威胁。文章介绍了结合不同权重漏洞的实际攻击策略,并通过实验数据验证了其可行性。同时,提出了简单矩阵方案(ABC)作为一种高效且安全的多元公钥加密方法,该方案避免了低秩特性,能够有效抵御现有攻击。文中还探讨了ABC方案在云计算、物联网和移动支付等场景的应用前景,并展望了密码学在量子抗性、跨学科融合及标准化方面的发展趋势。原创 2025-10-17 10:21:10 · 18 阅读 · 0 评论 -
27、基于码的密码系统中对综合征求逆的时序攻击
本文研究了基于纠错码的McEliece和Niederreiter公钥密码系统在解密过程中因综合征求逆操作引发的时序侧信道漏洞。通过分析不同汉明重量错误向量(如w1、4、6)对扩展欧几里得算法执行时间的影响,揭示了三种新型时序攻击途径:获取支撑集零元素、推导线性方程与三次方程。结合这些信息,攻击者可完全恢复秘密支撑集并重建私钥。文章详细描述了攻击流程,在个人计算机上实现了实际时序测量,并验证了攻击的有效性。最后提出了防御思路,强调消除控制流歧义和引入随机化技术的重要性。原创 2025-10-16 12:18:22 · 13 阅读 · 0 评论 -
26、基于码等价性难题的密码学应用分析
本文分析了基于码等价性难题的密码学应用,重点探讨了Girault三轮身份识别方案及其在q元域下的改进版本。通过对比原始与改进方案的安全性、通信成本及适用条件,指出改进方案在Fq(q ≥ 5)上依赖更难的(半)线性码等价问题,提升了抗量子攻击能力。同时,讨论了码等价性与非阿贝尔隐藏子群问题的关系,表明某些码族可抵抗量子傅里叶采样攻击。最后总结了当前挑战并展望未来研究方向,包括新码族探索、通信优化和码等价性概念的拓展应用。原创 2025-10-15 13:32:37 · 19 阅读 · 0 评论 -
25、基于代码等价性硬度的密码学应用研究
本文研究了有限域 $F_q$ 上线性代码的等价性及其在密码学中的应用,系统阐述了置换等价、线性等价和半线性等价的定义与关系。分析了代码等价性问题的计算复杂度,指出其难度不低于图同构问题,并探讨了支持分割算法(SSA)在不同域上的适用性:当 $q \in \{3,4\}$ 时可在多项式时间内求解多数实例,而 $q \geq 5$ 时问题变得困难。通过闭包构造,实现了线性等价向置换等价的约简。文章还讨论了代码等价性与量子傅里叶采样的联系,并基于新研究成果提出对 Girault 零知识协议的修复方法,建议在 $q原创 2025-10-14 11:25:14 · 24 阅读 · 0 评论 -
24、快速验证UOV和Rainbow改进版本及代码等价性在密码学中的应用
本文探讨了UOV和Rainbow签名方案的改进版本cyclicUOV与cyclicRainbow,通过引入结构化公钥(如部分循环矩阵)显著减小公钥大小(最多减少83%)并大幅提升验证速度(最高加速5倍)。文章详细分析了快速验证算法的实现原理与计算复杂度,并结合实验数据展示了其在不同参数下的性能优势。同时,深入研究了代码等价性问题及其在McEliece公钥密码系统和Girault零知识协议中的应用,指出支持分裂算法(SSA)对现有方案的安全影响,并提出应使用弱自对偶码等困难实例以保障安全性。最后展望了算法优化原创 2025-10-13 15:06:59 · 18 阅读 · 0 评论 -
23、编码理论中的安全匿名混合加密及多元签名方案优化
本文探讨了基于编码理论的安全匿名混合加密方案与多元签名方案的优化。重点介绍了Niederreiter密码系统的结构、安全性定义及其在IND-CCA模型下的安全性能,同时深入分析了多元公钥密码学中的UOV和彩虹签名方案,基于MQ问题与EIP问题的安全基础。针对多元签名方案公钥尺寸大、验证效率低的问题,综述了通过引入结构化矩阵(如循环矩阵)来压缩公钥并加速验证过程的优化方法,显著提升了方案的实用性。最后展望了其在物联网、区块链等场景的应用前景及未来研究方向。原创 2025-10-12 13:00:55 · 24 阅读 · 0 评论 -
22、基于编码理论的安全匿名混合加密方案解析
本文深入探讨了一种基于编码理论的安全匿名混合加密方案,结合Niederreiter密码系统、密钥封装机制(KEM)和数据封装机制(DEM),构建了具备高安全性和强匿名性的加密框架。方案利用综合征解码问题的计算困难性保障安全性,并通过KDF与MAC增强密钥派生与消息认证能力。文章详细解析了KEM与DEM的构造方法、混合加密流程及其在自适应选择密文攻击下的安全性与匿名性证明,同时提供了实际应用中的操作步骤与性能优化建议。最后展望了其在量子抗性、多方协作及与其他前沿技术融合的发展潜力,为未来信息安全提供了可靠的技原创 2025-10-11 11:33:43 · 23 阅读 · 0 评论 -
21、多变量公钥密码系统的差分不变量分类及编码理论的安全匿名混合加密
本文探讨了多变量公钥密码系统中的差分攻击与一阶差分不变量的分类,分析了C*单项式映射和pSFLASH方案的安全特性,指出其对一阶差分不变量攻击的抵御能力。同时,提出了一种基于编码理论的混合加密方案,该方案结合Niederreiter框架实现密钥封装机制(KEM),具备CCA安全性和IK-CCA意义下的密钥隐私性,是首个实现该级别匿名性的编码理论构造。文章还总结了当前研究的优势与挑战,并展望了未来在差分不变量探索、新密码方案设计及效率优化等方面的研究方向。原创 2025-10-10 09:59:23 · 17 阅读 · 0 评论 -
20、多变量公钥密码系统的HTTM签名方案分析与微分不变量分类
本文深入分析了多变量公钥密码系统(MPKC)中的HTTM签名方案,指出其通过HT变换和减法方法未能有效增强安全性。研究表明,若能伪造原始MPKC签名,则可推导出HTTM的有效签名,说明EMC结构存在安全缺陷。同时,文章引入微分不变量分类方法,为MPKC系统的安全评估提供了新视角,揭示了现有构造在微分对称性方面的弱点,并提出了改进方向,包括变换设计、参数优化与技术融合,对后量子密码研究具有重要启示意义。原创 2025-10-09 11:19:16 · 28 阅读 · 0 评论 -
19、量子密钥分发与多元公钥密码系统分析
本文分析了量子密钥分发(如BB84、EPR和BHM96)与经典认证密钥交换协议(如签名Diffie-Hellman和UP)在安全性、随机性揭示能力及长期安全属性方面的差异。基于形式化模型,论证了BB84等QKD协议在信息论意义上的长期安全性,并指出其对无界攻击者的抗性优势。同时探讨了多元公钥密码系统(MPKC)中HTTM签名方案的安全缺陷,揭示其安全性依赖于底层减号方案的可伪造性。文章进一步提出将QKD与eCK安全的经典协议并行运行并组合密钥的实用建议,以兼顾短期鲁棒性与长期保密性。最后展望了未来研究方向,原创 2025-10-08 15:24:34 · 14 阅读 · 0 评论 -
18、量子密钥分发在经典AKE框架中的研究
本文研究了量子密钥分发(QKD)在经典认证密钥交换(AKE)框架中的模型、协议及安全性定义。基于增强的eCK模型,提出了支持量子设备的参与方与敌手交互模型,并给出了新鲜会话和安全性的形式化定义。以BB84协议为例,详细描述了其在该框架下的执行流程与认证机制,分析了短期与长期安全性。同时探讨了实际应用中量子设备限制、认证方式选择和密钥管理等关键问题,为QKD协议的设计与评估提供了统一的理论基础和实践指导。原创 2025-10-07 12:41:10 · 16 阅读 · 0 评论 -
17、求解欠定MQ问题的扩展算法与量子密钥分发安全模型
本文探讨了求解欠定多变量二次(MQ)问题的扩展算法及其在密码学中的应用,重点分析了Hashimoto算法的结构、成功率与实现效率,并指出其相较于已有方法的优势与局限。同时,文章构建了一个适用于量子密钥分发(QKD)的经典认证密钥交换(AKE)安全框架,提出了兼顾即时安全性和长期安全性的多方模型,比较了BB84、EPR等QKD协议与经典AKE协议在不同攻击场景下的安全属性,尤其关注认证机制、随机性泄露对安全性的影响。研究强调了在实际环境中根据随机性质量、安全需求和实现难度选择合适协议的重要性,并展望了未来在算原创 2025-10-06 14:31:49 · 14 阅读 · 0 评论 -
16、求解欠定多元二次方程的扩展算法
本文提出了一种求解欠定多元二次方程(MQ问题)的扩展算法,适用于未知量个数n与方程个数m满足n ≥ m(m+3)/2的条件。该算法通过一系列线性变换和矩阵调整,将原问题转化为可逐步求解的二次方程形式,在有限域上实现了对MQ问题的有效求解。相比已有算法如Kipnis、Courtois和Thomae的方法,本算法在特征为2的有限域中具有更广的适用范围和较高的求解成功率,并通过实验验证了其性能优势。文章还分析了算法的复杂度与成功概率,讨论了其在多元公钥密码系统安全性评估中的应用前景。原创 2025-10-05 10:40:35 · 14 阅读 · 0 评论 -
15、麦利耶斯密码系统的高效攻击分析
本文对麦利耶斯密码系统的安全性进行了深入分析,提出了一种针对其公钥码中存在小支持集子码的高效攻击方法。通过改进低重量码字搜索算法,并结合广义汉明重量理论,揭示了秘密子码结构的可攻击性。文章进一步分析了不同参数下攻击复杂度的变化,指出增加随机列数虽能提升安全性,但仍面临子码序列、对偶攻击及非随机结构等多重挑战。最后提出了参数调整与算法优化的应对思路,并强调持续安全评估的重要性。原创 2025-10-04 10:21:08 · 17 阅读 · 0 评论 -
14、基于卷积码的McEliece密码系统高效攻击
本文研究了基于卷积码的McEliece密码系统的第二种方案的安全性,提出了一种高效的攻击方法。该攻击通过寻找公钥码中的低重量码字并进行过滤处理,成功解析出隐藏的卷积结构,并通过打孔操作分离出Goppa码部分,最终实现消息恢复。针对文献建议的参数,攻击在普通计算机上数小时内即可完成,表明该方案存在严重安全漏洞。文章还提出了改进攻击的方向和参数调整建议,并对未来研究进行了展望。原创 2025-10-03 16:18:57 · 15 阅读 · 0 评论 -
13、利用量子搜索更快地解决格中的最短向量问题
本文探讨了利用量子搜索技术加速解决格密码学中核心问题——最短向量问题(SVP)的多种算法。重点分析了Pujol和Stehlé的可证明饱和算法与Micciancio和Voulgaris的启发式算法在经典与量子环境下的时间及空间复杂度,比较了其性能优势与局限性。同时讨论了枚举算法和Voronoi单元算法在量子加速下的可行性与挑战。研究表明,量子搜索能显著降低SVP求解的复杂度,尤其在时间复杂度上取得近25%至27%的指数级提升,但实际应用仍受限于当前量子硬件的发展水平。未来的研究方向包括算法优化与新量子适应策略原创 2025-10-02 11:22:15 · 16 阅读 · 0 评论 -
12、利用量子搜索更快地解决格中的最短向量问题
本文探讨了利用量子搜索技术加速求解格中最具挑战性的问题之一——最短向量问题(SVP)。文章首先介绍了格与SVP的基础概念,回顾了经典求解算法如枚举法、筛选法、饱和法和Voronoi法的复杂度表现。重点分析了基于Grover量子搜索算法对筛选和饱和类算法的加速效果,指出在启发式和可证明框架下,量子算法可将时间复杂度指数常数降低约25%。具体而言,量子版本的筛选算法可在$2^{0.312n + o(n)}$时间内求解SVP,而饱和算法经量子优化后也展现出显著性能提升。研究还对比了多种算法在经典与量子环境下的时间原创 2025-10-01 09:22:31 · 36 阅读 · 0 评论 -
11、基于格的签名软件性能分析与量子搜索在最短向量问题中的应用
本文分析了基于格的签名软件中关键操作(如NTT变换、多项式加减乘、高阶变换)的性能,并在Ivy Bridge和Sandy Bridge处理器上进行了基准测试,详细拆解了密钥生成、签名与验证各阶段的周期消耗。通过与其他后量子及传统签名方案对比,展示了该方案在速度与密钥大小间的权衡优势。同时探讨了Grover量子搜索算法在最短向量问题(SVP)求解中的应用,给出了优于经典算法的量子时间复杂度,对后量子密码系统的参数设计具有指导意义。最后展望了性能优化方向、量子算法在密码分析等领域的潜在应用,以及未来在安全性评估原创 2025-09-30 15:09:51 · 17 阅读 · 0 评论 -
10、基于格的签名软件速度记录
本文介绍了一种高效且安全的基于格的签名方案软件实现,针对量子计算威胁下的长期安全性需求,采用数论变换(NTT)和AVX指令集等高级与低级优化技术,显著提升了签名生成与验证的速度。在Intel Core i5-3210M处理器上,每秒可完成超过3900次签名计算和55000次验证,具备良好的抗时序攻击能力。该实现为后量子密码的实际应用提供了高性能的软件基础。原创 2025-09-29 13:57:59 · 15 阅读 · 0 评论 -
9、深入解析 HFEv 和 HFEv- 的正则度及其对密码系统的影响
本文深入研究了HFEv和HFEv-密码系统的正则度,提出了其在不同参数下的正则度上界,并通过理论证明与实验验证相结合的方式评估了这些界的有效性。研究结果对分析基于HFE的密码系统(如QUARTZ)的安全性具有重要意义,尤其揭示了直接代数攻击在实际中的内存与通信瓶颈,指出暴力攻击在某些场景下可能更具可行性。文章还探讨了塔域构造、二进制域修正及未来研究方向,为多元公钥密码体制的安全性评估提供了关键理论支持。原创 2025-09-28 10:56:24 · 17 阅读 · 0 评论 -
8、阈值环签名与HFEv/HFEv-密码系统的正则度分析
本文探讨了阈值环签名在不同参数下的签名大小特性,并深入分析了HFEv和HFEv-密码系统的正则度问题。通过理论推导给出了正则度的上界,结合具体实例如QUARTZ评估其安全性,揭示了HFE变体在合理参数下具备较强抗攻击能力。同时介绍了代数密码分析中基于Gröbner基和XL方法的求解流程,强调正则度在复杂度估计中的关键作用,为评估多元公钥密码系统的安全性提供了理论依据。原创 2025-09-27 12:11:45 · 16 阅读 · 0 评论 -
7、改进的基于格的门限环签名方案
本文提出了一种改进的基于格的门限环签名方案,通过引入置换矩阵和统一的随机矩阵A,显著减小了签名和公钥的大小,尤其在大规模环成员场景下表现优异。方案采用Fiat-Shamir变换构建身份识别协议,确保t个不同签名者参与签名过程,并通过Σ掩码保证用户匿名性。安全性方面,方案满足源隐藏和不可伪造性:源隐藏基于承诺方案的统计隐藏性质,不可伪造性则归约到格上的ISIS困难问题,进而关联SIVP难题。分析表明,该方案在保持高安全性的前提下大幅优化了通信开销,具有良好的实际应用前景。原创 2025-09-26 14:31:05 · 16 阅读 · 0 评论 -
6、改进的基于格的门限环签名方案
本文提出了一种改进的基于格的门限环签名方案,通过引入新的承诺和掩码机制优化了匿名性实现方式。该方案在保留安全性的同时,减小了签名大小,尤其在t1时的环签名中表现出最小的签名开销。方案基于标准格难题如SIS、ISIS和SIVP,具有可证明安全特性,并通过Fiat-Shamir变换将交互式识别协议转化为非交互式签名。与已有方案相比,在Nt小于t个数字签名总大小时更具效率优势。原创 2025-09-25 11:53:12 · 23 阅读 · 0 评论 -
5、子集和问题的量子算法:表示法与量子行走的结合
本文介绍了一种结合表示法与量子行走的子集和问题量子算法。通过改进传统的左右分割方法,利用模数约束和多层集合划分,显著降低了算法的时间复杂度。在Howgrave-Graham-Joux算法基础上引入参数r控制子集规模,并借助量子行走放大成功概率,最终实现约2^(0.241n)的平衡成本,优于经典算法的2^(0.337n)。文章详细分析了算法流程、成功概率、数据结构及性能瓶颈,展示了量子计算在解决NP难问题上的潜力。原创 2025-09-24 14:41:04 · 15 阅读 · 0 评论 -
4、子集和问题的量子算法探索
本文系统探讨了子集和问题在量子计算框架下的多种求解算法,涵盖Grover搜索、量子左右拆分、量子行走及模数优化等技术。通过对比经典与量子方法的计算成本与适用场景,分析了不同算法在‘困难’情况下的性能优势。文章重点介绍了基于模数和增强基数树的量子行走算法,可将计算成本降至2^{0.3n},显著提升效率。同时讨论了数据结构选择、随机访问内存挑战及实际应用考量,并展望了未来在算法优化、数据结构创新和跨领域应用的发展方向。原创 2025-09-23 16:49:41 · 15 阅读 · 0 评论 -
3、基于LDGM码和稀疏综合征实现数字签名及量子子集和算法
本文提出了一种基于LDGM码和稀疏综合征的高效数字签名系统,显著减小了公钥大小并提升了解码效率,相较于传统CFS方案更具实用性。同时,介绍了一种新型量子子集和算法,结合量子行走与模数表示技术,在渐近复杂度上首次突破$2^{n/4}$,为解决NP完全问题提供了更高效的途径。文章还分析了系统的安全优势与潜在挑战,并探讨了量子算法在密码学及其他领域的应用前景。未来研究将聚焦于安全评估深化、算法优化及跨领域应用拓展。原创 2025-09-22 12:28:58 · 16 阅读 · 0 评论 -
2、使用 LDGM 码和稀疏校验子实现数字签名
本文介绍了一种基于LDGM码和稀疏校验子的数字签名方案,利用准循环(QC)结构优化密钥大小并增强安全性。系统通过公开矩阵b和变换矩阵Q、S构造公钥H',结合哈希函数与稀疏向量映射实现签名生成。文章详细阐述了签名的生成与验证流程,分析了不同攻击方式(如伪造攻击、支持分解攻击、密钥恢复攻击和生日攻击)的原理与应对策略,并讨论了关键参数对安全性和复杂度的影响。最后提出了通过合理参数选择、确定性码字生成和持续系统优化来提升安全性的建议。原创 2025-09-21 15:22:21 · 12 阅读 · 0 评论 -
1、基于LDGM码和稀疏校验子实现数字签名
本文介绍了一种基于低密度生成矩阵(LDGM)码和稀疏校验子的新型数字签名方案,旨在克服传统基于码的签名方案如CFS在公钥尺寸大、参数约束严格及易受量子攻击等问题。通过引入LDGM码和特定密度校验子的选择机制,新方案有效减小了公钥体积,提升了系统效率,并增强了对已知攻击的抵抗力。文章详细阐述了密钥生成、签名与验证过程,分析了潜在安全漏洞,并给出了关键参数的设计建议,为后量子环境下高效安全的数字签名提供了可行路径。原创 2025-09-20 11:31:59 · 14 阅读 · 0 评论
分享