数据分析小案例:招聘数据可视化,查看领域最需技术~

本文通过Python对招聘网站数据进行可视化分析,展示了不同学历、城市、经验及公司领域的职位需求情况。利用pyecharts库创建了条形图、饼图,揭示了平均薪资、热门招聘城市及学历、经验需求的占比。此外,还生成了福利词云图,帮助读者了解行业需求和市场动态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

嗨喽~大家好呀,这里是魔王呐

在前一章:让我们用python来采集数据看看找工作都要会什么吧~

我们讲了如何采集zhaopin网站数据,现在~

我们来把数据可视化,更好的查看在自己领域最需的技术是什么~

下面,我们直接上代码~

目录(可点击自己想去得地方哦~😋)

代码提供者:青灯教育-自游老师

代码

import pandas as pd
from pyecharts.charts import *
from pyecharts import options as opts
import re
from pyecharts.globals import ThemeType
from pyecharts.commons.utils import JsCode

完整可视化代码可查看并点击网页主页(文章)左侧的流动文字免费获取哦~(可能需要往下划一下呐)

也可以直接查看文章下方推广加助理小姐姐V免费获取呐~

# 读取数据
df = pd.read_csv("招聘数据.csv")
df.head()
df.info()
df['薪资'].unique()
df['bottom']=df['薪资'].str.extract('^(\d+).*')
df['top']=df['薪资'].str.extract('^.*?-(\d+).*')
df['top'].fillna(df['bottom'],inplace=True)

df['commision_pct']=df['薪资'].str.extract('^.*?·(\d{2})薪')
df['commision_pct'].fillna(12,inplace=True)
df['commision_pct']=df['commision_pct'].astype('float64')
df['commision_pct']=df['commision_pct']/12

df.dropna(inplace=True)

df['bottom'] = df['bottom'].astype('int64')
df['top'] = df['top'].astype('int64')
df['平均薪资'] = (df['bottom']+df['top'])/2*df['commision_pct']
df['平均薪资'] = df['平均薪资'].astype('int64')

df.head()
df['薪资'] = df['薪资'].apply(lambda x:re.sub('.*千/月', '0.3-0.7万/月', x))
df["薪资"].unique()
df['bottom'] = df['薪资'].str.extract('^(.*?)-.*?')
df['top'] = df['薪资'].str.extract('^.*?-(\d\.\d|\d)')
df.dropna(inplace=True)
df['bottom'] = df['bottom'].astype('float64')
df['top'] = df['top'].astype('float64')
df['平均薪资'] = (df['bottom']+df['top'])/2 * 10
df.head()
mean = df.groupby('学历')['平均薪资'].mean().sort_values()
x = mean.index.tolist()
y = mean.values.tolist
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值