本科生60行代码教你手搓GPT大模型,技术介绍堪比教程

GPT 模型实现起来有时也很简单。

当前,大型语言模型(LLM)被认为是人工智能突破的方向。人们正在尝试用它们做各种复杂的事情,比如问答、创作、数学推理以及编写代码等。近段时间 ChatGPT 持续的爆火是最好的例证。

然而,对于机器学习从业者来说,大模型的门槛很高:因为体量太大难以训练,很长时间里这个方向一直被大公司垄断。不过最近,简化 GPT 模型的方法越来越多了。1 月中旬,前特斯拉 AI 高级总监 Andrej Karpathy(现已回归 OpenAI)就发布了从零开始构建 GPT 模型的完整教程。不过训练出的 GPT 和 OpenAI 的 GPT-3 比较,两者规模差距达 1 万 - 100 万倍。

近日,加拿大麦克马斯特大学的一位软件工程本科生 Jay Mody 在导入 NumPy 库下,仅用 60 行代码就从头实现了一个 GPT 模型,并将其命名为 PicoGPT。不仅如此,他还将经过训练的 GPT-2 模型权重加载到自己的实现中,并生成了一些文本。下面为 60 行代码展示。

img

不过要做到这些,你需要熟悉 Python 和 NumPy,还要有一些训练神经网络的基本经验。作者表示,这篇博客旨在对 GPT 进行简单易懂的完整介绍。因此,作者只使用已经训练的模型权重来实现前向传递代码。

img

代码地址:

https://github.com/jaymody/picoGPT/blob/29e78cc52b58ed2c1c483ffea2eb46ff6bdec785/gpt2_pico.py#L3-L58

对于此项研究,Andrej Karpathy 给出了四个字:虽迟但到。想当初,Karpathy 构建的 minGPT 和 nanoGPT 还要 300 行代码。

img

值得一提的是,这篇教程不是完全零门槛的。为了让读者明白,作者首先介绍了什么是 GPT、它的输入、输出如何等其他内容,介绍得都非常详细。

img

至于 GPT 到底能干什么,作者给出了几个示例,它能写电子邮件、总结一本书、给你 instagram 标题的想法、向 5 岁的孩子解释黑洞、用 SQL 编写代码等。

通过仔细阅读这部分内容后,你能大致了解 GPT 的一些基础知识。有了这些背景介绍,接下来就是如何设置了。

项目介绍

设置

这一章节主要介绍了如何设置编码器、超参数以及参数。

img

你要做的,首先是克隆代码库:

img

然后安装依赖项:

img

注意,如果你使用的是 M1 Macbook,在运行 pip install 之前,你需要在 requirements.txt 中将 tensorflow 更改为 tensorflow-macos。在这个项目下,文件包括 encoder.py、utils.py、gpt2.py、gpt2_pico.py:

  • encoder.py:包含 OpenAI BPE Tokenizer 的代码,直接取自 gpt-2 repo;
  • utils.py:包含下载和加载 GPT-2 模型权重、tokenizer 和超参数的代码;
  • gpt2.py:包含 GPT 模型和生成代码,可以将其作为 python 脚本运行;
  • gpt2_pico.py:与 gpt2.py 相同,但是代码行数更少。

其中 gpt2.py 需要从头开始实现,因此你要做的是先删除 gpt2.py 并重新创建一个空文件:

img

然后将下列代码复制到 gpt2.py 中:

img

上述代码包含 4 个主要部分:

  • gpt2 函数是本次实现 GPT 的实际代码;
  • generate 函数实现自回归解码算法;
  • main 函数;
  • fire.Fire (main) 将文件转换为 CLI 应用程序,以便最终可以运行代码:python gpt2.py “some prompt here”。

main 函数包含有 encode、hparams、params 参数,执行下列代码:

img

接着必要的模型以及 tokenizer 文件将被下载到 models/124M 文件。

设置完成之后,作者开始介绍编码器、超参数、参数的一些细节内容。就拿编码器来说,本文的编码器和 GPT-2 使用的 BPE tokenizer 一样。下面是该编码器编码和解码的一些文本示例:

img

实际的 token 长这个样子:

img

需要注意,有时 token 是单词(例如 Not),有时它们是单词但前面有一个空格(例如 Ġall,Ġ 代表一个空格),有时是单词的一部分(例如 capes 被拆分为 Ġcap 和 es),有时它们是标点符号(例如 .)。

BPE 的一个好处是它可以对任意字符串进行编码,如果遇到词汇表中不存在的内容,它会将其分解为它能理解的子字符串:

img

更细节的内容不再赘述。接下来介绍基础神经网络,这一部分就更加基础了,主要包括 GELU、Softmax 函数以及 Layer Normalization 和 Linear。

img

每一小部分都有代码示例,例如在 Linear 部分,作者展示了标准矩阵乘法 + 偏置:

img

线性层从一个向量空间投影到另一个向量空间的代码如下:

img

GPT 架构

这部分介绍 GPT 自身架构。

img

Transformer 架构如下:

img

Transformer 仅使用解码器堆栈(图的右侧部分):

img

需要注意,由于摆脱了编码器,中间的交叉注意力层也被删除了。

在高层次上,GPT 体系架构有以下三个部分:

  • 文本 + 位置嵌入;
  • Transformer 解码器堆栈;
  • 投影到词汇表。

代码就像下面这样:

img

代码部分截图

接下来更详细地分解以上三个部分中的每一个部分,这里也不再赘述。

以上就是作者对 GPT 的实现,接下来就是将它们组合在一起并运行代码,得到 gpt2.py。它的全部内容只有 120 行代码(如果删除注释和空格,则为 60 行)。

作者通过以下方式测试结果:

img

输出结果如下:

img

正如作者说的:这次实验成功了。

本文只是跟着作者的思路大概介绍了整体流程,想要了解更多内容的小伙伴,可以参考原文链接。

原文链接:https://jaykmody.com/blog/gpt-from-scratch/#basic-layers

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

👉 福利来袭优快云大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭优快云大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值