让ChatGPT调用10万+开源AI模型!HuggingFace新功能爆火:大模型可随取随用多模态AI工具

只需和ChatGPT聊聊天,它就能帮你调用10万+个HuggingFace模型!

这是抱抱脸最新上线的功能HuggingFace Transformers Agents,一经推出就获得极大关注:

在这里插入图片描述

这个功能,相当于给ChatGPT等大模型配备了“多模态”能力——

不限于文本,而是图像、语音、文档等任何多模态任务都能解决。

例如告诉ChatGPT“解释这张图像”,并扔给它一张海狸照片。ChatGPT就能调用图像解释器,输出“海狸正在水里游泳”:

在这里插入图片描述

随后,ChatGPT再调用文字转语音,分分钟就能把这句话读出来:

当然,它不仅支持ChatGPT在内的OpenAI大模型,也支持OpenAssistant等免费大模型。

Transformer Agent负责“教会”这些大模型直接调用Hugging Face上的任意AI模型,并输出处理好的结果。

所以这个新上线的功能,背后的原理究竟是什么?

如何让大模型“指挥”各种AI?

简单来说,Transformers Agents是一个大模型专属的“抱抱脸AI工具集成包”。

HuggingFace上各种大大小小的AI模型,都被收纳在这个包里,并被分门别类为“图像生成器”、“图像解释器”、“文本转语音工具”……

同时,每个工具都会有对应的文字解释,方便大模型理解自己该调用什么模型。

在这里插入图片描述

这样一来,只需要一段简单的代码+提示词,就能让大模型帮助你直接运行AI模型,并将输出结果实时返还给你,过程一共分为三步:

首先,设置自己想用的大模型,这里可以用OpenAI的大模型(当然,API要收费):

from transformers import OpenAiAgent  
  
agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>")

也可以用BigCode或OpenAssistant等免费大模型:

from huggingface_hub import login  
  
login("<YOUR_TOKEN>")

然后,设置Hugging Transformers Agents。这里我们以默认的Agent为例:

from transformers import HfAgent  
  
# Starcoder  
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")  
# StarcoderBase# agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase")# OpenAssistant# agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")

接下来,就可以使用run()或者chat()两个指令,来运行Transformers Agents了。

run()适合同时调用多个AI模型,执行比较复杂专业的任务。

可以调用单个AI工具

例如执行agent.run(“Draw me a picture of rivers and lakes.”),它就能调用AI文生图工具帮你生成一张图像:

在这里插入图片描述

也可以同时调用多个AI工具

例如执行agent.run(“Draw me a picture of the sea then transform the picture to add an island”),它就能调用“文生图”和“图生图”工具,帮你生成对应图像:

在这里插入图片描述

chat()则适合以聊天的方式“持续完成任务”。

例如,先调用文生图AI工具,生成一个河流湖泊图片:agent.chat(“Generate a picture of rivers and lakes”)

在这里插入图片描述

再在这张图片的基础上做“图生图”修改:agent.chat(“Transform the picture so that there is a rock in there”)

在这里插入图片描述

要调用的AI模型可以自行设置,也可以使用抱抱脸自带的一套默认设置来完成。

已设置一套默认AI模型

目前,Transformers Agents已经集成了一套默认AI模型,通过调用以下Transformer库中的AI模型来完成:

1、视觉文档理解模型Donut。给定图片格式的文件(PDF转图片也可以),它就能回答关于这个文件的问题。

例如问“TRRF科学咨询委员会会议将在哪里举行”,Donut就会给出答案:

在这里插入图片描述

2、文字问答模型Flan-T5。给定长文章和一个问题,它就能回答各种文字问题,帮你做阅读理解。

3、零样本视觉语言模型BLIP。它可以直接理解图像中的内容,并对图像进行文字说明。

4、多模态模型ViLT。它可以理解并回答给定图像中的问题,

5、多模态图像分割模型CLIPseg。只需要给它一个模型和一个提示词,它就能根据这个提示分割出图像中指定的内容(mask)。

6、自动语音识别模型Whisper。它可以自动识别一段录音中的文字,并完成转录。

7、语音合成模型SpeechT5。用于文本转语音。

8、自编码语言模型BART。除了可以自动给一段文字内容分类,还能做文本摘要。

9、200种语言翻译模型NLLB。除了常见语言外,还能翻译一些不太常见的语言,包括老挝语和卡姆巴语等。

通过调用上面这些AI模型,包括图像问答、文档理解、图像分割、录音转文字、翻译、起标题、文本转语音、文本分类在内的任务都可以完成。

除此之外,抱抱脸还“夹带私货”,包含了一些Transformer库以外的模型,包括从网页下载文本、文生图、图生图、文生视频:

在这里插入图片描述

这些模型不仅能单独调用,还可以混合在一起使用,例如要求大模型“生成并描述一张好看的海狸照片”,它就会分别调用“文生图”和“图片理解”AI模型。

当然,如果我们不想用这些默认AI模型,想设置一套更好用的“工具集成包”,也可以根据步骤自行设置。

对于Transformers Agents,也有网友指出,有点像是LangChain agents的“平替”:

你试过这两个工具了吗?感觉哪个更好用?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值