用 DeepSeek 打造你的超强代码助手

大家好,今天我想给你们介绍一个我最近发现的工具,叫 DeepSeek Engineer。它是一个专门为开发者打造的代码助手应用,可以帮你读文件、改文件,甚至生成代码。更厉害的是,它完全基于 DeepSeek API,能实时生成 JSON 格式的响应,让你的开发体验提升一个档次。

在这里插入图片描述


DeepSeek Engineer 是啥?

简单来说,DeepSeek Engineer 是一个基于命令行的智能助手。它能帮你完成这些事:

  • 快速读文件内容:比如你有个配置文件,直接用命令把它加载进助手,后续所有操作都可以基于这个文件。
  • 自动改文件:它不仅能提建议,还可以直接生成差异表(diff),甚至自动应用修改。
  • 智能代码生成:比如你让它生成代码片段,它会按照指定格式和规则直接返回。

在这里插入图片描述

更重要的是,这一切都是通过 DeepSeek 的强大 API 来实现的。想象一下,你有个贴身助手,不仅能听懂你的代码需求,还能直接动手帮你写!


核心功能拆解

我们先来看 DeepSeek Engineer 的几个核心能力,让你更好地理解它的强大之处。

1. 自动配置 DeepSeek 客户端

启动这个工具时,你只需要准备一个 .env 文件,里面写上你的 API Key,比如:

DEEPSEEK_API_KEY=your_api_key_here

然后它会自动帮你连接到 DeepSeek 的服务器(地址通过环境变量配置)。接下来,所有的对话和操作都走这个 API,让你体验到类似 GPT 的流畅交互。

在这里插入图片描述


2. 数据模型:严格又灵活

DeepSeek Engineer 使用了 Pydantic 来定义和管理数据模型,这保证了所有操作都很安全且清晰。比如,它的模型包括以下几个部分:

  • FileToCreate:描述新建或更新的文件。
  • FileToEdit:定义某个文件里需要替换的代码片段。
  • AssistantResponse:用来结构化处理助手返回的对话内容和文件操作。

具体来说,如果你想改文件内容,可以让它返回一个 JSON 格式的修改建议,类似这样:

{
  "file": "example.py",
  "changes": [
    {
      "original": "print('Hello')",
      "replacement": "print('Hello, DeepSeek!')"
    }
  ]
}

这种方式既直观又安全,你完全可以放心地应用这些修改。


3. 强大的系统 Prompt

DeepSeek Engineer 背后有一个设计得非常好的系统 Prompt,它会引导对话始终输出结构化的 JSON 数据,同时还能支持文件创建和编辑操作。

在这里插入图片描述

这个设计的好处是,开发者不用担心助手回复出错或格式混乱。所有的响应都像程序接口一样,清晰、标准。


4. 常用 Helper 函数

工具中还提供了一些实用的函数,专门用来操作文件和内容:

  • read_local_file:快速读取本地文件内容,返回成字符串。
  • create_file:帮你新建或覆盖文件。
  • show_diff_table:生成一个漂亮的差异表,展示文件修改前后的对比。
  • apply_diff_edit:直接应用代码片段级别的修改。

比如,你想更新一个文件里的某段代码,只需输入以下命令:

/add path/to/file

DeepSeek 会把这个文件的内容加载进来,你可以继续对话,让它生成修改建议并直接应用到文件中。


5. 交互式会话

运行主程序(比如 python3 main.py),你会进入一个交互式的命令行界面。这里你可以随时输入请求、加载文件,或者让助手生成代码。

完整操作流程可以是这样的:

  1. 启动工具:```
    python3 main.py

    
    
  2. 加载一个文件:```
    /add example.py

    
    
  3. 让助手修改内容:```
    请把函数 foo 改成返回值为整数。

    
    
  4. 查看生成的建议并确认应用。

是不是很贴心?


与其他工具的对比

市面上其实有不少类似的代码助手,比如 GitHub Copilot、TabNine 等。那么 DeepSeek Engineer 和它们相比有什么特别之处呢?我们通过下表来简单对比一下:

功能DeepSeek EngineerGitHub CopilotTabNine
文件内容读取✅ 支持❌ 不支持❌ 不支持
文件修改和应用✅ 支持❌ 不支持❌ 不支持
JSON 响应结构化✅ 内置支持❌ 不支持❌ 不支持
离线使用❌ 需要联网❌ 需要联网✅ 部分支持
灵活性和可定制性✅ 可配置 Prompt❌ 不支持❌ 不支持

可以看出,DeepSeek Engineer 更加注重文件操作和开发流程的实际需求,非常适合需要精确控制和定制化的场景。


如何快速上手?

最后,说点大家最关心的:怎么用?

  1. 准备环境

    • 安装依赖:```
      pip install -r requirements.txt

      
      
    • 配置 API Key:创建 .env 文件,写入你的 Key。

  2. 启动工具

    • 直接运行主程序:```
      python3 main.py

      
      
  3. 体验功能

    • /add 命令加载文件:```
      /add your_file.py

      
      
    • 提出需求,让助手生成代码或修改建议。

  4. 探索更多用法

    • 修改配置,试试用不同的环境变量自定义连接方式。

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值