10行Python代码能做出哪些酷炫的事情?

Python凭借其简洁的代码,赢得了许多开发者的喜爱。因此也就促使了更多开发者用Python开发新的模块,从而形成良性循环,Python可以凭借更加简短的代码实现许多有趣的操作。下面我们来看看,我们用不超过10行代码能实现些什么有趣的功能。

一、生成二维码

二维码又称二维条码,常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,而生成一个二维码也非常简单,在Python中我们可以通过MyQR模块了生成二维码,而生成一个二维码我们只需要2行代码,我们先安装MyQR模块,这里选用国内的源下载:

pip install qrcode 

安装完成后我们就可以开始写代码了:

import qrcode

text = input(输入文字或URL:)  
# 设置URL必须添加http://
img =qrcode.make(text)
img.save()                            
#保存图片至本地目录,可以设定路径
img.show()

我们执行代码后会在项目下生成一张二维码。当然我们还可以丰富二维码:

我们先安装MyQR模块

pip install  myqr
def gakki_code():
    version, level, qr_name = myqr.run(
        words=https://520mg.com/it/#/main/2,  
        # 可以是字符串,也可以是网址(前面要加http(s)://)
        version=1,  # 设置容错率为最高
        level='H',  
        # 控制纠错水平,范围是L、M、Q、H,从左到右依次升高
        picture=gakki.gif,  
        # 将二维码和图片合成
        colorized=True,  # 彩色二维码
        contrast=1.0, 
         # 用以调节图片的对比度,1.0 表示原始图片,更小的值表示更低对比度,更大反之。默认为1.0
        brightness=1.0,  
        # 用来调节图片的亮度,其余用法和取值同上
        save_name=gakki_code.gif,  
        # 保存文件的名字,格式可以是jpg,png,bmp,gif
        save_dir=os.getcwd()  # 控制位置

    )
 gakki_code()

另外MyQR还支持动态图片。

二、生成词云

词云又叫文字云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。

但是作为一个老码农,还是喜欢自己用代码生成自己的词云,复杂么?需要很长时间么?很多文字都介绍过各种的方法,但实际上只需要10行python代码即可。

先安装必要库

pip install wordcloud
pip install jieba
pip install matplotlib
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba

text_from_file_with_apath = open('/Users/hecom/23tips.txt').read()

wordlist_after_jieba = jieba.cut(text_from_file_with_apath, cut_all = True)
wl_space_split =  .join(wordlist_after_jieba)

my_wordcloud = WordCloud().generate(wl_space_split)

plt.imshow(my_wordcloud)
plt.axis(off)
plt.show()

如此而已,生成的一个词云是这样的:

图片

读一下这10行代码:

  • 1~3 行,分别导入了画图的库matplotlib,词云生成库wordcloud 和 jieba的分词库;
  • 4 行,是读取本地的文件,代码中使用的文本是本公众号中的《老曹眼中研发管理二三事》。
  • 5~6 行,使用jieba进行分词,并对分词的结果以空格隔开;
  • 7行,对分词后的文本生成词云;
  • 8~10行,用pyplot展示词云图。

这是我喜欢python的一个原因吧,简洁明快。

三、批量抠图

抠图的实现需要借助百度飞桨的深度学习工具paddlepaddle,我们需要安装两个模块就可以很快的实现批量抠图了,第一个是PaddlePaddle:

python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

还有一个是paddlehub模型库:

pip install -i https://mirror.baidu.com/pypi/simple paddlehub

接下来我们只需要5行代码就能实现批量抠图:

import os, paddlehub as hub
humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')        # 加载模型
path = 'D:/CodeField/Workplace/PythonWorkplace/GrapImage/'    # 文件目录
files = [path + i for i in os.listdir(path)]    # 获取文件列表
results = humanseg.segmentation(data={'image':files})    # 抠图

四、文字情绪识别

在paddlepaddle面前,自然语言处理也变得非常简单。实现文字情绪识别我们同样需要安装PaddlePaddle和Paddlehub,具体安装参见三中内容。然后就是我们的代码部分了:

import paddlehub as hub        
senta = hub.Module(name='senta_lstm')        # 加载模型
sentence = [    # 准备要识别的语句
    '你真美', '你真丑', '我好难过', '我不开心', '这个游戏好好玩', '什么垃圾游戏',
]
results = senta.sentiment_classify(data={text:sentence})    # 情绪识别
# 输出识别结果
for result in results:
    print(result)

识别的结果是一个字典列表:

{'text': '你真美', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9602, 'negative_probs': 0.0398}
{'text': '你真丑', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0033, 'negative_probs': 0.9967}
{'text': '我好难过', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.5324, 'negative_probs': 0.4676}
{'text': '我不开心', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.1936, 'negative_probs': 0.8064}
{'text': '这个游戏好好玩', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9933, 'negative_probs': 0.0067}
{'text': '什么垃圾游戏', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0108, 'negative_probs': 0.9892}

其中sentiment_key字段包含了情绪信息,详细分析可以参见Python自然语言处理只需要5行代码。

五、识别是否带了口罩

这里同样是使用PaddlePaddle的产品,我们按照上面步骤安装好PaddlePaddle和Paddlehub,然后就开始写代码:

import paddlehub as hub
# 加载模型
module = hub.Module(name='pyramidbox_lite_mobile_mask')
# 图片列表
image_list = ['face.jpg']
# 获取图片字典
input_dict = {'image':image_list}
# 检测是否带了口罩
module.face_detection(data=input_dict)

执行上述程序后,项目下会生成detection_result文件夹,识别结果都会在里面。

六、简易信息轰炸

Python控制输入设备的方式有很多种,我们可以通过win32或者pynput模块。我们可以通过简单的循环操作来达到信息轰炸的效果,这里以pynput为例,我们需要先安装模块:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ pynput

在写代码之前我们需要手动获取输入框的坐标:

from pynput import mouse
# 创建一个鼠标
m_mouse = mouse.Controller()
# 输出鼠标位置
print(m_mouse.position)

可能有更高效的方法,但是我不会。

获取后我们就可以记录这个坐标,消息窗口不要移动。然后我们执行下列代码并将窗口切换至消息页面:

import time
from pynput import mouse, keyboard
time.sleep(5)
m_mouse = mouse.Controller()    # 创建一个鼠标
m_keyboard = keyboard.Controller()  # 创建一个键盘
m_mouse.position = (850, 670)       # 将鼠标移动到指定位置
m_mouse.click(mouse.Button.left) # 点击鼠标左键
while(True):
    m_keyboard.type('你好')        # 打字
    m_keyboard.press(keyboard.Key.enter)    # 按下enter
    m_keyboard.release(keyboard.Key.enter)    # 松开enter
    time.sleep(0.5)    # 等待 0.5秒

我承认,这个超过了10行代码,而且也不高端。

七、识别图片中的文字

我们可以通过Tesseract来识别图片中的文字,在Python中实现起来非常简单,但是前期下载文件、配置环境变量等稍微有些繁琐,所以本文只展示代码:

import pytesseract
from PIL import Image
img = Image.open('text.jpg')
text = pytesseract.image_to_string(img)
print(text)

其中text就是识别出来的文本。如果对准确率不满意的话,还可以使用百度的通用文字接口。

八、简单的小游戏

从一些小例子入门感觉效率很高。

import random
print(1-100数字猜谜游戏!)
num = random.randint(1,100)
guess =guess

i = 0
while guess != num:
    i += 1
    guess = int(input(请输入你猜的数字:))

    if guess == num:
        print(恭喜,你猜对了!)
    elif guess < num:
        print(你猜的数小了...)
    else:
        print(你猜的数大了...)

print(你总共猜了%d %i + 次)

猜数小案例当着练练手

关于Python学习指南

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

👉Python所有方向的学习路线👈

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)

在这里插入图片描述

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python70个实战练手案例&源码👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python大厂面试资料👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方优快云官方认证二维码或者点击链接免费领取保证100%免费

制作具有酷炫科技感的非遗主题投影,可从以下几个方面着手: ### 内容策划 - **深入挖掘非遗元素**:对非遗项目进全面调研,了解其历史、文化背景、技艺特点、传说故事等。从中提取具有代表性和视觉冲击力的元素,如传统图案、人物形象、场景等,作为投影内容的创作基础。例如,对于剪纸非遗项目,可以提取各种精美的剪纸图案。 - **故事化呈现**:将非遗元素以故事的形式串联起来,增强内容的吸引力和感染力。通过情节的设置,引导观众沉浸在非遗的世界中。比如,讲述一位非遗传承人坚守技艺的故事,展示其制作过程和传承精神。 - **融入科技元素**:结合现代科技理念和表现手法,为非遗内容增添酷炫感。例如,运用特效、动画、虚拟现实等技术,使投影画面更加生动逼真。如在展示传统武术非遗时,添加光影特效来突出武术的力量感和节奏感。 ### 技术实现 - **投影 Mapping 技术**:对投影对象进三维建模,精确计算投影的位置和角度,确保投影内容与实物完美贴合。通过专业的投影 Mapping 软件,将制作好的内容投射到特定的物体表面,如建筑、雕塑等。例如,对古建筑进投影 Mapping,展示其历史变迁。 - **互动投影技术**:利用红外感应、摄像头识别、传感器等设备,实现观众与投影内容的互动。当观众做出特定动作或触摸投影区域时,投影画面会产生相应的变化。比如,观众可以通过手势操作切换不同的非遗展示内容,或者参与非遗技艺的模拟制作。 - **多投影融合技术**:使用多台投影仪进拼接和融合,扩大投影画面的尺寸和视野范围,营造出更加震撼的视觉效果。通过专业的融合软件,调整投影仪的参数,使拼接处的画面过渡自然,色彩和亮度一致。 ### 设备选择 - **高亮度投影仪**:根据投影环境的光线条件和投影尺寸,选择合适亮度的投影仪。在光线较亮的环境中,需要使用高亮度(如 3000 流明以上)的投影仪,以确保投影画面清晰可见。 - **高分辨率投影仪**:为了呈现细腻、清晰的投影画面,选择高分辨率(如 1920×1080 及以上)的投影仪。高分辨率能够更好地展示非遗元素的细节和色彩。 - **短焦或超短焦投影仪**:如果投影空间有限,短焦或超短焦投影仪是不错的选择。它们可以在较短的距离内投射出较大的画面,节省空间。 ### 后期制作与调试 - **内容编辑与优化**:使用视频编辑软件对投影内容进剪辑、调色、添加特效等处理,提高画面的质量和视觉效果。确保内容的节奏合理,过渡自然。 - **现场调试**:在实际投影现场,对投影仪的位置、角度、焦距等参数进精细调整,确保投影画面的清晰度、色彩准确性和融合效果。同时,测试互动功能的稳定性和灵敏度。 ```python # 示例代码:简单的互动投影触发逻辑模拟 import random # 模拟红外感应信号 def detect_movement(): return random.choice([True, False]) # 投影内容切换函数 def switch_projection_content(): print("切换投影内容") # 主循环 while True: if detect_movement(): switch_projection_content() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值