本篇主要从训练数据预处理、模型结构、训练参数设置与错误处理四大角度比较细节地分享大模型微调经验。
大模型的训练和微调过程相对于以前NLP中fine-tuning模式存在一些新的坑,并且做一些简单的消融实验相对于以前的模式试错成本也更高;此外目前很多算法工程师更多精力都放在了处理数据上, 工作之余很难有精力去做探索实验。
所以小伙伴们在实践前可以多看看一些通用的实践经验,带着一些先验知识去探索,尽量规避自己陷入一些无意义的坑中。
本篇将开启一个新系列,尽量细节的讲讲大模型中训练和微调的经验。
本篇主要从训练数据预处理、模型结构、训练参数设置与错误处理四大角度来谈经验,下面是一个问题的快捷目录。
\1. 拿到业务产生的一批新的对话数据,需要进行SFT,怎样对这批数据进行优化?
\2. 模型训练时,历史对话长度是不是设置得越长越好,一般设置多少?
\3. 模型训练样本量规模增大,导致训练任务直接报OOM了,该怎么办?
\4. 微调大模型的时候在模型结构方面有哪些经验?
\5. 微调大模型的时候训练配置一般是怎样的?
\6. 微调大模型时出现错误崩溃该怎么办?
拿到业务产生的一批对话数据,需要进行SFT,怎样对这批数据进行优化?
1. 上下文内容处理
考虑具体模型历史对话长度,输入历史对话数据进行左截断, 保留最新的对话记录。
2. 语句顺滑处理
把一些口语化的语气词、语法错误等进行顺滑,如嗯嗯、呃、啊啊之类的口语词。
3. 去掉一些敏感或不合适的内容
这里可以从整句和词的角度来考虑。
- 整句
可以基于如fasttext等模型训练一个简单的文本分类模型,把价值观不正确的或不合适的样本数据筛出来;
还可以训练一个奖励模型。
- 词
这里比较直接,可以设置一个敏感词列表。
4. 扩充用户特征标签
基于年龄、性别、地域、人群等,针对对话的用户做一个特征标签,可以便于后期分析,做其他实验等。
模型训练时,历史对话长度是不是设置得越长越好,一般设置多少?
这个消融实验是这么设计的,选同一个模型,分别用两种方案训练,变量是max_source_length和max_target_length,对训练好之后的模型从Loss、Bleu指标、离线人工评估等角度进行对比分析。
下面直接附上结论:
基于现有显存条件,从人工评估少量样本以及loss下降来看,历史对话长度设置得越长越好。历史对话长度1024比512长度好,后续如果训练可能上线模型,可以扩大到1024长度。
模型训练样本量规模增大,导致训练任务直接报OOM了,该怎么办?
1. 方案
对数据并行处理,核心思想是使数据向量化耗时随处理进程的增加线性下降,训练时数据的内存占用只和数据分段大小有关,可以根据数据特点,灵活配置化。
2. 具体操作
- 均分完整数据集到所有进程(总的GPU卡数);
- 每个epoch训练时整体数据分片shuffle一次,在每个进程同一时间只加载单个分段大小数据集;
- 重新训练时可以直接加载向量化后的数据。
微调大模型的时候在模型结构有哪些经验?
- 模型结构:目前都用Causal Decoder + LM。有很好的zero-shot和few-shot能力,涌现效应
- Layer normalization: 使用Pre RMS Norm
- 激活函数: 使用GeGLU或SwiGLU
- Embedding层后不添加layer normalization,否则会影响LLM的性能
- 位置编码: 使用ROPE或ALiBi。ROPE应用更广
- 去除偏置项: 去除dense层和layer norm的偏置项,有助于提升稳定性
微调大模型的时候在训练配置方面有哪些经验?
- Batch size: 大模型在硬件显存满足的情况下,一般batch size越大越好, 建议选用很大的batch size; 后期动态地增加batch size的策略,GPT3逐渐从32K增加到3.2M tokens。
- 学习率设置: 先warmup再衰减。学习率先线性增长,再余弦衰减到最大值的10%。最大值一般在 5e-5到1e-4之间。
- 梯度裁剪: 通常将梯度裁剪为1.0。
- 权重衰减: 采用AdamW优化器,权重衰减系数设置为0.1Adamw相当于Adam加了一个L2正则项。
- 混合精度训练: 采用bfloat16,而不是foat16来训练。
微调大模型时出现错误崩溃该怎么办?
前面都好好的,过某个shard的时候突然崩溃了大概率是数据问题。
选择一个好的断点,跳过训练崩溃的数据段,进行断点重训。
选择一个好的断点的两点标准:
- 损失标度 lossscale>0;
- 梯度的L2范数<一定值 且 波动小。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
优快云大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
优快云大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。