理解线性回归(三)——岭回归Ridge Regression
1. 基本模型
岭回归是在前篇介绍普通最小二乘法回归(ordinary least squares regression)的基础上,加入了对表示系数的L2-norm约束。其目标函数为:
我们可以看到the first term 表示对回归表示后的误差最小,the second term是表示系数的均方根最小化。需要之处的是,这种对系数的约束在sparse coding, dictionary learning也是经常用到的。而且经常会有不同的范数norm要求。
&nb