Leetcode Factorial Trailing Zeroes

本文介绍了一种高效算法,用于计算给定整数n的阶乘(n!)末尾0的数量。该算法采用对数时间复杂度实现,通过逐级除以5的幂次来累计结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in logarithmic time complexity.

最后的解法就是对n/5+n/25+n/125+…+进行求和,当n小于分母的时候,停止。分母依次为5^1, 5^2, 5^2… 这样的话在计算5^2的时候,能被25整除的数里面的两个5,其中一个已经在5^1中计算过了。所以5^2直接加到count上。

public class Solution {
       public int trailingZeroes(int n) {
        if ( n<0 ) return -1;
        int count = 0;
        for (long i=5; n/i>=1; i*=5) {
            count += n / i;
        }        
        return count;
    }
}
基于Spring Boot搭建的一个多功能在线学习系统的实现细节。系统分为管理员和用户两个主要模块。管理员负责视频、文件和文章资料的管理以及系统运营维护;用户则可以进行视频播放、资料下载、参与学习论坛并享受个性化学习服务。文中重点探讨了文件下载的安全性和性能优化(如使用Resource对象避免内存溢出),积分排行榜的高效实现(采用Redis Sorted Set结构),敏感词过滤机制(利用DFA算法构建内存过滤树)以及视频播放的浏览器兼容性解决方案(通过FFmpeg调整MOOV原子位置)。此外,还提到了权限管理方面自定义动态加载器的应用,提高了系统的灵活性和易用性。 适合人群:对Spring Boot有一定了解,希望深入理解其实际应用的技术人员,尤其是从事在线教育平台开发的相关从业者。 使用场景及目标:适用于需要快速搭建稳定高效的在线学习平台的企业或团队。目标在于提供一套完整的解决方案,涵盖从资源管理到用户体验优化等多个方面,帮助开发者更好地理解和掌握Spring Boot框架的实际运用技巧。 其他说明:文中不仅提供了具体的代码示例和技术思路,还分享了许多实践经验教训,对于提高项目质量有着重要的指导意义。同时强调了安全性、性能优化等方面的重要性,确保系统能够应对大规模用户的并发访问需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值